• Title/Summary/Keyword: diagonal gait

Search Result 4, Processing Time 0.018 seconds

Effects of Diagonal Pattern Self-Exercise on Trunk Control, Balance, and Gait Ability in Chronic Stroke Patients

  • Yang, Jaeho;Park, Shinjun;Kim, Soonhee
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.11 no.2
    • /
    • pp.2028-2035
    • /
    • 2020
  • Background: Weakness of the trunk muscles decreases the trunk control ability of stroke patients, which is significantly related to balance and gait. Objectives: To compare the impact of diagonal pattern self-exercise on an unstable surface and a stable surface for trunk rehabilitation on trunk control, balance, and gait ability in stroke patients. Design: Nonequivalent control group design. Methods: Twenty four participants were randomized into the experimental group (diagonal pattern self-exercise while sitting on an unstable surface, n=12) and the control group (diagonal pattern self-exercise while sitting on a stable surface, n=12). All interventions were conducted for 30 minutes, three times a week for four weeks, and the trunk impairment scale (TIS), berg balance scale (BBS), functional gait assessment (FGA), and G-walk were measured. Results: All groups indicated significant increases in all variables (TIS, BBS, FGA, cadence, speed, stride length) after four weeks. The TIS, BBS, FGA, cadence, gait speed, and stride length group-by-time were significantly different between the two groups. Conclusion: We found that, in stroke patients, diagonal pattern self-exercise on an unstable surface is a more effective method for improving trunk control, balance, and gait ability than diagonal pattern self-exercise on a stable surface.

A study on Dynamic Gait Quadruped Walking Robot (사각 보행 로봇의 동적 걸음새에 관한 연구)

  • 김진섭;오준호;조진철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.78-81
    • /
    • 1997
  • In this study, we prepose the dynamic gait in consideration of emerge efficiency. The proposed dynamic gait is applied to the quadruped walking robot and experiments are performed for real robot. We proposed the dynamic gait is diagonal gait which is modified the trot gait in consideration of energy efficiency. The proposed gait is composed of two steps. In one step, the robot walks in the trot gait. In the other step, the robot walks with making the center of gravity lie on the two legs supporting line. Realization of the diagonal intermittent trot gait is performed by open loop contal and motion planning of the proposed gait. The validity of the purposed gait is confirmed by our experiment.

  • PDF

Effect of Dynamic Tubing Gait Training for Life-Care on Balance of Stroke Patients (라이프케어 증진을 위한 동적탄력튜빙 보행훈련이 뇌졸중 환자의 균형에 미치는 영향)

  • Lee, Seon-Yeong;Lee, Dong-Ryul
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.1
    • /
    • pp.171-180
    • /
    • 2021
  • The present study investigated the effects of dynamic tubing gait (DTG II) program on the balancing ability for the promotion of life care of patients with chronic stroke. In the study, 25 sessions of DTG II program (30 minutes per session, 5 sessions per week, for a total of 5 weeks) were applied to 10 patients with chronic stroke. To determine the effects of DTG II program for improving balance, surface electromyography(external oblique, erector spinae, iliopsoas, gluteus maximus), symmetry index test on three pelvic axes, and dynamic gait index test were performed before and after the intervention. The results showed statistically significant differences between preand post-intervention measurements of the gluteus maximus muscle at early and mid-stance phases(p<.05). The pelvic symmetry index differed significantly between pre- and post-intervention measurements of diagonal and rotational movement(p<.05). Comparison of dynamic gait index also showed statistically significant differences between pre- and post-intervention measurements(p<.05). Based on these findings, it was determined that the DTG II program was able to improve the balancing ability of patients with chronic stroke by activating their trunk muscles and improving the symmetry of diagonal pelvic movement and rotation. Therefore, DTG II program is recommended as an interventional method to improve life-care through improving the balancing ability of patients with chronic stroke.

Gait Programming of Quadruped Bionic Robot

  • Li, Mingying;Jia, Chengbiao;Lee, Eung-Joo;Feng, Yiran
    • Journal of Multimedia Information System
    • /
    • v.8 no.2
    • /
    • pp.121-130
    • /
    • 2021
  • Foot bionic robot could be supported and towed through a series of discrete footholds and be adapted to rugged terrain through attitude adjustment. The vibration isolation of the robot could decouple the fuselage from foot-end trajectories, thus, the robot walked smoothly even if in a significant terrain. The gait programming and foot end trajectory algorithm were simulated. The quadruped robot of parallel five linkages with eight degrees of freedom were tested. The kinematics model of the robot was established by setting the corresponding coordinate system. The forward and inverse kinematics of both supporting and swinging legs were analyzed, and the angle function of single leg driving joint was obtained. The trajectory planning of both supporting and swinging phases was carried out, based on the control strategy of compound cycloid foot-end trajectory planning algorithm with zero impact. The single leg was simulated in Matlab with the established kinematic model. Finally, the walking mode of the robot was studied according to bionics principles. The diagonal gait was simulated and verified through the foot-end trajectory and the kinematics.