• Title/Summary/Keyword: diagnostic x-ray

Search Result 589, Processing Time 0.032 seconds

Evaluation to X-ray Tube Variable Beam Limiting Device Ability Test, Collimation and Beam Alignment Test of Diagnostic X-ray Unit (진단용 X선발생장치의 X선관 가변조리개 성능검사와 조사야일치검사 및 중심선속 일치검사에 대한 평가)

  • Im, In-Chul;Lee, Sang-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.3
    • /
    • pp.250-255
    • /
    • 2009
  • This study performed and evaluated the performance test in 40 general X-ray units among diagnostic X-ray units, which were being used in hospitals of gyeongsangnam-do gimhae-si through X-ray tube variable limiting device ability test, the light field and X-ray field alignment test and collimation and beam alignment test of diagnostic X-ray unit. The results are as followings: In a variable beam limiting device ability test, the result of maximum X-ray field test showed that 4(10%) of were incongruent while the result of minimum X-ray field test represented that 5(12.5%) of were incongruent. The result of the light field and X-ray field alignment test showed 23(57.5%) of were within 2% of maximum permissible level and the other 17(42.5%) units were misalignment. The result of beam alignment test represented that 11(27.5%) coincided and another 11(27.5%) within $0.5^{\circ}$ respectively, 10(25%) were $0.6^{\circ}-1.5^{\circ}$ intervals, 7(17.5%) were $1.6^{\circ}-3^{\circ}$ and 1(2.5%) were more than $3^{\circ}$.

Halide Perovskites for X-ray Detection: The Future of Diagnostic Imaging

  • Nam Joong Jeon;Jung Min Cho;Jung-Keun Lee
    • Progress in Medical Physics
    • /
    • v.33 no.2
    • /
    • pp.11-24
    • /
    • 2022
  • X-ray detection has widely been applied in medical diagnostics, security screening, nondestructive testing in the industry, etc. Medical X-ray imaging procedures require digital flat detectors operating with low doses to reduce radiation health risks. Recently, metal halide perovskites (MHPs) have shown great potential in high-performance X-ray detection because of their attractive properties, such as strong X-ray absorption, high mobility-lifetime product, tunable bandgap, low-temperature fabrication, near-unity photoluminescence quantum yields, and fast photoresponse. In this paper, we review and introduce the development status of new perovskite X-ray detectors and imaging, which have emerged as a new promising high-sensitivity X-ray detection technology. We discuss the latest progress and future perspective of MHP-based X-ray detection in medical imaging. Finally, we compare the conventional detection methods with quantum-enhanced detection, pointing out the challenges and perspectives for future research directions toward perovskite-based X-ray applications.

HVL Measurement of the Miniature X-Ray Tube Using Diode Detector (다이오드 검출기를 이용한 초소형 X선관(Miniature X-ray Tube)의 반가층 측정)

  • Kim, Ju-Hye;An, So-Hyeon;Oh, Yoon-Jin;Ji, Yoon-Seo;Huh, Jang-Yong;Kang, Chang-Mu;Suh, Hyunsuk;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.279-284
    • /
    • 2012
  • The X ray has been widely used in both diagnosis and treatment. Recently, a miniature X ray tube has been developed for radiotherapy. The miniature X ray tube is directly inserted into the body irradiated, so that X rays can be guided to a target at various incident angles according to collimator geometry and, thus, minimize patient dose. If such features of the miniature X ray tube can be applied to development of X ray imaging as well as radiation treatment, it is expected to open a new chapter in the field of diagnostic X ray. However, the miniature X ray tube requires an added filter and a collimator for diagnostic purpose because it was designed for radiotherapy. Therefore, a collimator and an added filter were manufactured for the miniature X ray tube, and mounted on. In this study, we evaluated beam characteristics of the miniature X ray tube for diagnostic X ray system and accuracy of measuring the HVL. We used the Si PIN Photodiode type Piranha detector (Piranha, RTI, Sweden) and estimated the HVL of the miniature X ray tube with added filter and without added filter. Through an another measurement using Al filter, we evaluated the accuracy of the HVL obtained from a direct measurement using the automatic HVL calculation function provided by the Piranha detector. As a result, the HVL of the miniature X ray tube was increased around 1.9 times with the added filter mounted on. So we demonstrated that the HVL was suitable for diagnostic X ray system. In the case that the added filter was not mounted on, the HVL obtained from use of the automatic HVL calculation function provided by Piranha detector was 50% higher than the HVL estimated using Al filter. Therefore, the HVL automatic measurement from the Piranha detector cannot be used for the HVL calculation. However, when the added filter was mounted on, the HVL automatic measurement value using the Piranha detector was approximately 15% lower than the estimated value using Al filter. It implies that the HVL automatic measurement can be used to estimate the HVL of the miniature X ray tube with the added filter mounted on without a more complicated measurement method using Al filter. It is expected that the automatic HVL measurement provided by the Piranha detector enables to make kV-X ray characterization easier.

General Requirements Pertaining to Radiation Protection in Diagnostic X-ray Equipment -KFDA DRS 1-1-3 : 2008 base on IEC 60601-1-3:2008- (진단용 엑스선 장치에 있어서 방사선 방어에 대한 일반 요구사항 -IEC 60601-1-3:2008에 근거한 KFDA DRS 1-1-3:2008-)

  • Kang, Hee-Doo;Dong, Kyung-Rae;Kweon, Dae-Cheol;Choi, Jun-Gu;Jeong, Jae-Ho;Jung, Jae-Eun;Ryu, Young-Hwan
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.11 no.2
    • /
    • pp.69-77
    • /
    • 2009
  • This study gives an account of the collateral standards in IEC 60601-1-3: 2008 specifying the general requirements for basic safety and essential performance of diagnostic X-ray equipment regarding radiation protection as it pertains to the production of X-rays. The collateral standards establish general requirements for safety regarding ionization radiation in diagnostic radiation systems and describe a verifiable evaluation method of suitable requirements regarding control over the lowest possible dose equivalent for patients, radiologic technologists, and others. The particular standards for each equipment can be determined by the general requirements in the collateral standard and the particular standard is followed in the risk management file. The guidelines for radiation safety of diagnostic radiation systems is written up in ISO 13485, ISO 14971, IEC 60601-1-3(2002)1st edition, medical electric equipment part 1-3, and the general requirements for safety-collateral standards: programmable electrical medical systems. Therefore the diagnostic radiation system protects citizens' health rights with the establishment and revisions of laws and standards for diagnostic radiation systems as a background for the general requirements of radiation safe guards applies, as an international trend, standards regarding the medical radiation safety management. The diagnostic radiation system will also assure competitive power through a conforming evaluation unifying the differing standards, technical specifications, and recognized processes.

  • PDF

Measurement of Dose Distribution for Diagnostic X-ray (X선진단(診斷) 영역(領域)에 있어서의 심부선량분포(深部線量分布)의 측정(測定))

  • Kim, You-Hyun;Huh, Joon;Kim, Seung-Chul;Yoon, Jong-Min
    • Journal of radiological science and technology
    • /
    • v.18 no.1
    • /
    • pp.55-62
    • /
    • 1995
  • This study was performed to find out dose distribution, pdd, surface dose and off center ratio. A few articles is analysis of dose data in radiotherapy field, there is no standardized measure of an assessment of exposure dose at diagnostic radiology, yet. And authors demonstrated a new assessment measure by ion chamber, TLD and film dosimetry system. We assurance that our data is useful to quantiative analysis of exposure dose and clinical fields for reduction of radiation dose.

  • PDF

Assessment of Effective Dose from Diagnostic X-ray Examinations of Adult (진단X선에 의한 성인의 진단행위별 유효선량평가)

  • Kim, Woo-Ran;Lee, Choon-Sik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.3
    • /
    • pp.155-164
    • /
    • 2002
  • Methodology to evaluate the effective doses to adults undergoing various diagnostic x-ray examinations were established by Monte Carlo simulation of the x-ray examinations. Anthropomorphic mathematical phantoms, the MIRD5 male phantom and the ORNL female phantom, were used as the target body and x-ray spectra were produced by the x-ray spectrum generation code SPEC78. The computational procedure was validated by comparing the resulting doses to the results of NRPB studies for the same diagnostic procedures. The effective doses as well as the organ doses due to chest, abdomen, head and spine examinations were calculated for x-rays incident from AP, PA, LLAT and RLAT directions. For instance, the effective doses from the most common procedures, chest PA and abdomen AP, were 0.029 mSv and 0.44 mSv, respectively. The fact that the effective dose from PA chest x-ray is far lower than the traditional value of 0.3 mSv(or 30 mrem), which results partly from the advances of technology in diagnostic radiology and partly from the differences in the dose concept employed, emphasizes necessities of intensive assessment of the patient doses in wide ranges of medical exposures. The methodology and tools established in this study can easily be applied to dose assessments for other radiology procedures; dose from CT examinations, dose to the fetus due to examinations of pregnant women, dose from pediatric radiology.

The Utility of Routine Chest X-Ray on Korean Medicine Hospital Admission (한방병원 입원 시 관례적 흉부 X선 검사의 유용성)

  • Choi, In-woo;Yoo, Ho-ryong
    • The Journal of Internal Korean Medicine
    • /
    • v.42 no.4
    • /
    • pp.622-627
    • /
    • 2021
  • Objective: This study was designed to analyze the utility of routine chest X-ray on Korean medicine hospital admission. Methods: The chest X-ray reports and medical records of 618 patients who were admitted to Daejeon Korean Medicine Hospital from May 1, 2021 to June 30, 2021 were retrospectively reviewed. Results: Of the 618 patients newly hospitalized from May 1, 2021 to June 30, 2021, 560 patients (excluding readmission) were analyzed. The mean age of 560 patients was 53.26±17.20 years. There were 52 patients with abnormal findings, and their mean age was 69.62±15.59 years. Many of these patients had chest symptoms and a history of chest disease. There was no case that showed a significant diagnostic result by chest X-ray examination. Conclusion: The diagnostic usefulness of routine chest X-rays in Korean medicine hospital admission is low. But this does not mean that there is no need to perform routine chest X-rays upon admission.

Shielding Capability Evaluation of Mobile X-ray Generator through the Production assembled Shield (일체형 방어벽 제작을 통한 이동형 엑스선 발생기의 차폐능 평가)

  • Kim, Seung-Uk;Han, Byeoung-Ju
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.895-908
    • /
    • 2018
  • As modern science is developed and advanced, examination and number of times using radiation are increasing daily. General diagnostic X-ray generator is installed on stationary form, But X-ray generator was developed because patient who is in the intensive care unit, operation room, emergency room can not move to general x-ray room. What we examine patient by x-ray generator is certainly necessary, So patient exposure is inevitable. but reducing radiation exposure is highly important matter about radiation technology, guardian, patient in the same hospital room, nurse etc. For this reason, rule regarding safety control of diagnostic x-ray generator revised for radiation worker, patient and protector proclaim that mobile diagnostic x-ray shield must placed in case of examine different location excluding operation room, emergency room, intensive care unit. But, radiogical technologist is having a lot of difficulties to examine with mobile x-ray generator, diagnostic x-ray shield partition, image plate and lead apron. So, when we use x-ray generator, we manufacture shield tools can be attached to the mobile x-ray generator On behalf of x-ray shield partition and conduct analysis and in comparison to part of body and distribution of dose rate and find way to reduce radiation exposure through distribution of dose rate of patient within the radiogical technologist, medical team. Mobile x-ray generator aimed at SHIMADZU inc. R-20, We manufactured equipment for shielding x-ray scattered x-ray by installing shielding wall from side to side based on support beam on the mobile x-ray generator. Shielding wall when moving can be folded and designed to expand when examine. Experiment measured five times in each by an angle for dose rate of eyes, thyroid, breast, abdomen and gonad on exposure condition of upper and lower extremity, chest, abdomen which is examined many times by mobile x-ray generator. We used dosimeter RSM-100 made by IJRAD and measured a horizontal dose rate by body part. The result of an experiment, shielding decreasing rate of the front and the rear showed 77 ~ 98.7%. Therefore using self-production shielding wall reduce scattered x-ray occurrence rate and confirm can decrease exposure dose consequently. Therefore, through this study, reduction result which is used shielding wall of self-production will be a role of shielding optimization and it could be answer about reduction of medical exposure recommended by ICRP 103.