Min Hye Kim;Kyeong Ah Kim;Yi Kyeong Chun;Jeong Woo Kim;Jongmee Lee;Chang Hee Lee
Journal of the Korean Society of Radiology
/
v.85
no.2
/
pp.445-450
/
2024
Gastric metastasis (GM) from cervical cancer is extremely rare, and only a few cases have been reported in the English literature. Gastric-type mucinous adenocarcinomas (GAS) of the uterine cervix are rare. GAS is an aggressive cancer commonly found in advanced stages; however, GM has not been reported. This study presents a rare case of GM from GAS of the uterine cervix in a 61-year-old female and describes the radiological findings of both the GM and cervical mucinous adenocarcinoma. GM appeared as a poor enhancing submucosal mass. The cervical mucinous adenocarcinoma appeared as an infiltrating mass with poor contrast enhancement. It exhibited mildly high and low signal intensities on the diffusion-weighted image and apparent diffusion coefficient map, respectively. This case is extremely rare and challenging to diagnose; however, if cervical cancer is an human papillomavirus-independent GAS type and a submucosal lesion is found in the stomach, the possibility of metastasis with a pattern similar to our case could be considered.
Ji-hoon Jung;Young-Hoon Jo;Yeo Ju Kim;Seunghun Lee;JeongAh Ryu
Journal of the Korean Society of Radiology
/
v.85
no.1
/
pp.171-183
/
2024
Purpose This study aimed to investigate which indirect parameters on preoperative MRI were the principal predictors of subscapularis tendon tears (STTs) requiring surgical repair. Materials and Methods Preoperative MRI scans of 86 patients were retrospectively reviewed for visual assessment of the STT, pathology of the long head of the biceps tendon (LHBT), posterior decentering (PD) of the humeral head, humeral rotation, fatty degeneration, and subscapularis muscle atrophy. To evaluate atrophy, visual grading using the anatomical line connecting the coracoid tip to the glenoid base, designated as the base-to-tip line (BTL), and thickness measurements were performed in the en-face view. Results Arthroscopically, 31 patients (36%) exhibited Lafosse type III or IV STT and underwent surgical repair. LHBT pathology (p = 0.002), PD of the humeral head (p = 0.012), fatty degeneration (p < 0.001), and BTL grade (p = 0.003) significantly correlated with STT. In the multivariate analysis, PD of the humeral head (p = 0.011, odds ratio [OR] = 5.14) and fatty degeneration (p = 0.046, OR = 2.81) were independent predictors of STT. Conclusion PD of the humeral head and fatty degeneration of the subscapularis can help to diagnose clinically significant STT. Interpretation of these findings may contribute to the planning of an optimal surgical strategy.
Hyuk Je Lee;Yu Rim Kim;Hee-kyu Choi;Seo Yeon Byeon;Soon Young Hwang;Kwang-Guk An;Seo Jin Ki;Dae-Yeul Bae
Journal of Ecology and Environment
/
v.48
no.1
/
pp.32-48
/
2024
Background: Longitudinal connectivity in river systems strongly affects biological components related to ecosystem functioning, thereby playing an important role in shaping local biodiversity and ecosystem health. Environmental DNA (eDNA)-based metabarcoding has an advantage of enabling to sensitively diagnose the presence/absence of species, becoming an efficient/effective approach for studying the community structure of ecosystems. However, little attention has been paid to eDNA-based biomonitoring for river systems, particularly for assessing the river longitudinal connectivity. In this study, by using eDNA we analyzed and compared species diversity and composition among artificial barriers to assess the longitudinal connectivity of the fish community along down-, mid- and upstream in the Hotancheon from the Geum River basin. Moreover, we investigated temporal variation in eDNA fish community structure and species diversity according to season. Results: The results of species detected between eDNA and conventional surveys revealed higher sensitivity for eDNA and 61% of species (23/38) detected in both methods. The results showed that eDNA-based fish community structure differs from down-, mid- and upstream, and species diversity decreased from down to upstream regardless of season. We found that there was generally higher species diversity at the study sites in spring (a total number of species across the sites [n] = 29) than in autumn (n = 27). Nonmetric multidimensional scaling and heatmap analyses further suggest that there was a tendency for community clusters to form in the down-, mid- and upstream, and seasonal variation in the community structure also existed for the sites. Dominant species in the Hotancheon was Rhynchocypris oxycephalus (26.07%) regardless of season, and subdominant species was Nipponocypris koreanus (16.50%) in spring and Odontobutis platycephala (15.73%) in autumn. Artificial barriers appeared to negatively affect the connectivity of some fish species of high mobility. Conclusions: This study attempts to establish a biological monitoring system by highlighting the versatility and power of eDNA metabarcoding in monitoring native fish community and further evaluating the longitudinal connectivity of river ecosystems. The results of this study suggest that eDNA can be applied to identify fish community structure and species diversity in river systems, although some shortcomings remain still need to be resolved.
Ocean reanalysis data are extensively used in ocean circulation and climate research by integrating observational data with numerical models. This approach overcomes the spatial and temporal limitations of observational data and provides high-resolution gridded information that considers the physical interactions between ocean variables. In this study, I extended the previously produced 12-year (2011-2022) Northwest Pacific regional ocean reanalysis data to create a long-term reanalysis dataset (K-ORA22E) with a horizontal resolution of 1/24° spanning 30 years (1993-2022). These data were analyzed to diagnose long-term ocean climate change in the Korean marginal seas. Analysis of the K-ORA22E data revealed that the axis of the Kuroshio extension has shifted northward by approximately 6 km per year over the past 30 years, with a significant increase in sea surface temperature north of the Kuroshio axis. Among the waters surrounding the Korean Peninsula, the East Sea exhibited the most significant temperature increase. In the East Sea, the temperature increase was more pronounced in the middle layer than in the surface layer, with the East Korea Warm Current showing a rate two to three times higher than the global average. In the central Yellow Sea, where the Yellow Sea Bottom Cold Water appears, temperatures increased over the long-term, but decreased along the west and south coasts of the Korean Peninsula. These spatial differences in long-term temperature changes appear to be closely related to the heat transport pathways of warm water from the Kuroshio Current. High-resolution regional ocean reanalysis data, such as the K-ORA22E produced in this study, are essential foundational data for understanding long-term variability in the Korean marginal seas and analyzing the impacts of climate change.
Facility diagnosis is essential for the smooth operation and life extension of rotating equipment used in industrial sites. Compared to other diagnostic methods, vibration diagnosis can find most of the initial defects, such as unbalance, alignment failure, bearing defects and resonance, compared to other diagnostic methods. Therefore, vibration analysis is the most commonly used facility diagnosis method in industrial sites, and is usefully used as a predictive preservation (PdM) technology to manage the condition of the facility. However, since the vibration diagnosis method is performed based on experience based on the standard, it is carried out by experts. Therefore, it is intended to contribute to the reliability of the facility by establishing a system that anyone can easily judge defects by establishing a vibration diagnosis method performed based on experience as a knowledgeable code system. An algorithm was developed based on the ISO-20816 standard for vibration measurement, and the reliability was verified by comparing the results of vibration measurement at various demonstration sites such as petrochemical plant compressors, hydrogen charging stations, and industrial machinery with the results of analysis using a development system. The developed algorithm can contribute to predictive maintenance (PdM) technology that anyone can diagnose the condition of the rotating machine at industrial sites and identify defects early to replace parts at the exact time of replacement. Furthermore, it is expected that it will contribute to reducing maintenance costs and downtime due to the failure of rotating machines when applied to various industrial sites such as oil refining facilities, transportation, production facilities, and aviation facilities.
Recently, as a lot of software with AI functions has been developed, the number of software products with various prediction functions is increasing, and as a result, the importance of software quality has increased. In particular, as consideration for functional safety of products with AI functions increases, software quality management is being conducted at a national level. In particular, the GS Quality Certification System is a quality certification system for software products that is being implemented at the national level, and the GS Certification System is also researching quality evaluation methods for AI products. In this study, we attempt to present an evaluation model that satisfies the basic conditions of software quality based on international standards among the various quality evaluation models presented to verify software reliability. Considering the software quality characteristics of the artificial intelligence sector, we study quality evaluation models, diagnose quality, and predict failures. .In this study, we propose an international standard model for artificial intelligence based on the software reliability growth model, present an evaluation model, and present a method for quality diagnosis through the model. In this respect, this study is considered to be important in that it can predict failures in advance and find failures in advance to prevent risks by predicting the failure time that will occur in software in the future. In particular, it is believed that predicting failures will be important in various safety-related software.
Li Kaike;Riel Castro-Zunti;Seok-Beom Ko;Gong Yong Jin
Journal of the Korean Society of Radiology
/
v.85
no.4
/
pp.769-779
/
2024
Purpose To determine the pros and cons of an artificial intelligence (AI) model developed to diagnose acute rib fractures in chest CT images of patients with chest trauma. Materials and Methods A total of 1209 chest CT images (acute rib fracture [n = 1159], normal [n = 50]) were selected among patients with chest trauma. Among 1159 acute rib fracture CT images, 9 were randomly selected for AI model training. 150 acute rib fracture CT images and 50 normal ones were tested, and the remaining 1000 acute rib fracture CT images was internally verified. We investigated the diagnostic accuracy and errors of AI model for the presence and location of acute rib fractures. Results Sensitivity, specificity, positive and negative predictive values, and accuracy for diagnosing acute rib fractures in chest CT images were 93.3%, 94%, 97.9%, 82.5%, and 95.6% respectively. However, the accuracy of the location of acute rib fractures was low at 76% (760/1000). The cause of error in the diagnosis of acute rib fracture seemed to be a result of considering the scapula or clavicle that were in the same position (66%) or some ribs that were not recognized (34%). Conclusion The AI model for diagnosing acute rib fractures showed high accuracy in detecting the presence of acute rib fractures, but diagnosis of the exact location of rib fractures was limited.
Researchers have developed various algorithms utilizing artificial intelligence (AI) to automatically and objectively diagnose patterns and extent of pulmonary emphysema or interstitial lung diseases on chest CT scans. Studies show that AI-based quantification of emphysema on chest CT scans reveals a connection between an increase in the relative percentage of emphysema and a decline in lung function. Notably, quantifying centrilobular emphysema has proven helpful in predicting clinical symptoms or mortality rates of chronic obstructive pulmonary disease. In the context of interstitial lung diseases, AI can classify the usual interstitial pneumonia pattern on CT scans into categories like normal, ground-glass opacity, reticular opacity, honeycombing, emphysema, and consolidation. This classification accuracy is comparable to chest radiologists (70%-80%). However, the results generated by AI are influenced by factors such as scan parameters, reconstruction algorithms, radiation doses, and the training data used to develop the AI. These limitations currently restrict the widespread adoption of AI for quantifying pulmonary emphysema and interstitial lung diseases in daily clinical practice. This paper will showcase the authors' experience using AI for diagnosing and quantifying emphysema and interstitial lung diseases through case studies. We will primarily focus on the advantages and limitations of AI for these two diseases.
Hyun Ju Choi;Yeon Ju Kim;Jeong Ho Choi;Dong Hyuk Choi;Duck Hwan Park
Research in Plant Disease
/
v.30
no.3
/
pp.294-299
/
2024
Polymerase chain reaction (PCR) methods, including conventional PCR (cPCR) and quantitative real-time PCR (qRT-PCR), with both plasmid- and chromosome-targeting primers, are currently the most reliable methods for detecting Erwinia amylovora due to their high sensitivity and specificity. Despite qRT-PCR's quantitative advantage, cPCR remains an attractive method to detect this bacterium in initial screenings of suspected host plants, as it is cost-effective and does not require skilled personnel in well-equipped laboratories. This study aimed to significantly improve cPCR robustness via application of bovine serum albumin (BSA) as a PCR facilitator, with a modified EaF/R primer pair, as previously reported. Experiments have shown that simple supplementation with BSA (10 mg/ml) enhances cPCR reactions using templates such as genomic DNA, bacterial cells, and infected symptomless host organs, including immature apple fruits and seedlings, with EaF/R primers. The cPCR method described in this study is simple, specific, and reliable, and can be applied in routine assays to diagnose fire blight.
Lee, Jae Rang;Kim, Seung;Lee, Young Mock;Lee, Joon Soo;Kim, Heung Dong
Clinical and Experimental Pediatrics
/
v.52
no.4
/
pp.458-463
/
2009
Purpose : Schizencephaly is a uncommon congenital brain anomaly characterized by congenital clefts spanning the cerebral hemispheres from pial surface to lateral ventricles and lined by gray matter. In this study, we investigated the clinical manifestation and radiologic findings of pediatric schizencephaly. Methods : The data of 13 patients who were diagnosed with schizencephaly in Severance Childrens Hospital and Yongdong Severance Hospital from January 2005 to December 2007 were analyzed retrospectively. Results : The mean age at diagnosis was $9.08{\pm}2.67$ months old and ranged from 1 to 30 months. The ratio of male to female patients was 3.33:1. Five (38.5%) patients had bilateral clefts, while 8 (61.5%) had unilateral clefts. Five (38.5%) patients had closed lip clefts, and 4 (30.8%) had opened lip clefts. Four (30.8%) patients had multiple clefts. Associated anomalies showed in all cases. The clinical features consisted of mild unilateral weakness in 7 (53.8%) cases and a hemiparesis was present in 3 (23.1%) patients. A tetraparesis was in 3 (23.1%) patients. There was no difference in motor deficit between unilateral and bilateral clefts. Delayed development was observed in all cases. Epilepsy was present in 7 (53.8%) patients, 5 patients with unilateral clefts and 2 patients with bilateral clefts. Three (42.8%) patients showed intractable seizures. Conclusion : Schizencephaly showed variable clinical manifestations and radiologic findings in association with the types and locations of the clefts. It is necessary to diagnose schizencephaly early and to detect the development of epilepsy. Intensive and large studies of the correlation of clinical outcomes and radiologic findings should be continued for more effective treatment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.