• Title/Summary/Keyword: diagenetic mineral facies

Search Result 6, Processing Time 0.028 seconds

Stratigraphy, Lithology and Diagenetic Mineral Facies of the Tertiary Yeonil Group (제 3기 연일층군의 층서, 암상 및 속성 광물상)

  • Noh Jin Hwan
    • The Korean Journal of Petroleum Geology
    • /
    • v.2 no.2 s.3
    • /
    • pp.91-99
    • /
    • 1994
  • In the Heunghae area, genetic relationships among sedimentary facies, lithology, stratigraphy and diagenetic mineral facies of the Yeonil Group, are discussed. Conglomerate and sandstone of lower to middle parts of the Yeonil Group contain considerable amounts of volcaniclastic sediments, which were derived from the Tertiary volcanics exposed in the western margins of the sedimentary basin. A new stratigraphic division of the Yeonil Group into the Chunbuk and Pohang Formations is proposed on the basis of sedimentary facies, lithologic characteristics including volcaniclastic feature, and the presence of a key bed of siliceous mudstone overlying the Chunbuk Formation. Diagenetic mineral facies largely depend on the lithology and composition of sediments. Heulandite, smectite, calcite, and opal-CT are commonly found as diagenetic minerals in the Yeonil Group. Among these authigenic minerals, heulandite occurs as the coarse- grained main cement in conglomerates and sandstones of the Chunbuk Formation. Formation of the zeolite cement is favored by partial volcaniclastic lithology of the Chunbuk Formation. Smectite composition and diagenetic mineral facies such as heulandite and opal-CT may reflect that the Yeoil Group has undergone a shallow rial temperature ranging $40{\~}60^{\circ}C$.

  • PDF

포항분지에 대한 석유지질학적 연구

  • 김기현;김재호;김상석;박동배;이용일
    • 한국석유지질학회:학술대회논문집
    • /
    • spring
    • /
    • pp.48-55
    • /
    • 1998
  • The Pohang Basin is located in Pohang City and adjacent coastal areas in the southeastern Korea. It has a sequence of 900 meters of Neogene marine sediments (Yeonil Group) while offshore basins in the East Sea, e.g., the Ulleng basin, is over 10 Km in thickness. An understanding of the marine Yeonil Group in the Pohang Basin may provide insights into the hydrocarbon potential of the offshore East Sea regions. Heulandite, smectite, dolomite, kaolinite and opal-CT are commonly found as diagenetic minerals in the Yeonil Group. Among these minerals, heulandite occurs as a main cement only in sandstones consisting of volcanic matrix, Smectite composition and diagenetic mineral facies such as heulandite and opal-CT may reflect that the Yeonil Group has undergone shallow burial, temperatures below about 60 degrees. This suggest that sandstones have experiened weak diagenetic alteration. In order to reconstruct the thermal history of the basin, apatite fission-track analysis was carried out. Aapparent apatite fission-track ages (AFTAs) exhibit a broader range of ages from 238 Ma to 27 Ma with mean track lengths in the range of $15.24\pm8.0$ micrometers, indicating that these samples had undergone significant predepositional thermal alteration. The Triassic to Cretaceous AFTAs seem In represent the timing of cooling of their sedimentary sources. Late Cretaceous mean AFTA $(79.0\pm8.0 Ma)$ on the Neogene Yeonil Group indicates that the Yeonil Group had not been buried deeper than 2km since its deposition. The organic matters of. the Pohang Basin remain in the immature stage of thermal evolution because burial depth and temperature were not sufficient enough for maturation even in the deep section of the basin.

  • PDF

Mineralization Environments and Evaluation of Resources Potentials for the Absorbent-functional Mineral Resources Occurred in the Coal-bearing Formation of the Janggi Group (장기층군의 함탄층에서 산출되는 흡착기능성 광물 자원의 부존 환경 및 자원잠재성 평가)

  • Noh, Jin-Hwan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.3 s.49
    • /
    • pp.197-207
    • /
    • 2006
  • In the coal-bearing formations of the Janggi Group, which are reported as typical clastic sediments, several beds of volcaniclastic rocks are actually found in the Yeongil area. The coal-bearing formations generally exhibit alternating lithologic characteristics of pyroclastic and epiclastic sedimentary facies. Tuff and tuffaceous sandstone rich in pumice fragments are characteristic in the coal-bearing fermations. Diagenetic minerals found in the pyroclastic rocks of the upper and lower coal-bearing formations are montmorillonite, clinoptilolite, opal-CT, and quartz. Several tuffaceous beds correspond to the low-grade ores of zeolites and bentonite, and moreover, these ores mostly occur as thin beds less than 1 m in thickness. Thus, the potential of altered tuffaceous rocks as the resources typical of zeolite and bentonite seems to be low. However, based on mineral composition and CEC determinations, it can be evaluated that these tuffaceous rocks mostly have the promising potential for utilization as the absorbent-functional mineral resources such as acid clays, if these low-grade ores plus adjacent tuffaceous rocks are collectively exploited.

Isotope Geochemistry of Uranium Ore Deposits in Okcheon Metamorphic Belt, South Korea (옥천변성대내(沃川變成帶內)에 분포(分布)하는 우라늄광상(鑛床)의 동위원소(同位元素) 지구화학적(地球化學的) 연구(硏究))

  • Kim, Kyu Han
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.163-173
    • /
    • 1986
  • Black and graphite slates from the Okcheon metamorphic belt contain enriched values of uranium (average 200~250ppm) and molybdenum (average 150~200ppm). Uranium mineralization is closely associated with quartz and sulfide veinlets which are formed diagenetically in graphite slate. The uranium minerals were concentrated in outer part of graphite nodules. The ${\delta}^{13}C$ values of organic carbon from the metasediments including uranium bearing graphite slate range from -15.2 to -26.1‰ with a mean of -23.5‰. Meanwhile, ${\delta}^{13}C$ values of coal and coaly shale from some Paleozoic coal fields of South Korea vary from -19.4 to -23.9‰ with an average of -22.5‰. Isotopic compositions of vein calcite in uranium bearing slate range from -13.4 to -15.4‰ in ${\delta}^{13}C$ and +11.3 to +15.1‰ in ${\delta}^{18}O$ could indicate a reduced organic carbon source isotopically exchanged with a graphite of biogenic origin. Metamorphic temperature determined by a calcite-graphite isotope geothermometer was 383~$433^{\circ}C$ which corresponded to greenschist facies by Miyashiro (1973) and is consistent with metamorphic facies estimated by mineral assemblages (Lee, et al., 1981, and Kim, 1971). The fixation of uranyl species by carbonaceous matter in marine epicontinental environment, and remobilization of organouranium by diagenetic processes have attributed to the enrichment of uranium and heavy metals in the graphite slate of Okcheon metamorphic belt.

  • PDF

Geology of Athabasca Oil Sands in Canada (캐나다 아사바스카 오일샌드 지질특성)

  • Kwon, Yi-Kwon
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • As conventional oil and gas reservoirs become depleted, interests for oil sands has rapidly increased in the last decade. Oil sands are mixture of bitumen, water, and host sediments of sand and clay. Most oil sand is unconsolidated sand that is held together by bitumen. Bitumen has hydrocarbon in situ viscosity of >10,000 centipoises (cP) at reservoir condition and has API gravity between $8-14^{\circ}$. The largest oil sand deposits are in Alberta and Saskatchewan, Canada. The reverves are approximated at 1.7 trillion barrels of initial oil-in-place and 173 billion barrels of remaining established reserves. Alberta has a number of oil sands deposits which are grouped into three oil sand development areas - the Athabasca, Cold Lake, and Peace River, with the largest current bitumen production from Athabasca. Principal oil sands deposits consist of the McMurray Fm and Wabiskaw Mbr in Athabasca area, the Gething and Bluesky formations in Peace River area, and relatively thin multi-reservoir deposits of McMurray, Clearwater, and Grand Rapid formations in Cold Lake area. The reservoir sediments were deposited in the foreland basin (Western Canada Sedimentary Basin) formed by collision between the Pacific and North America plates and the subsequent thrusting movements in the Mesozoic. The deposits are underlain by basement rocks of Paleozoic carbonates with highly variable topography. The oil sands deposits were formed during the Early Cretaceous transgression which occurred along the Cretaceous Interior Seaway in North America. The oil-sands-hosting McMurray and Wabiskaw deposits in the Athabasca area consist of the lower fluvial and the upper estuarine-offshore sediments, reflecting the broad and overall transgression. The deposits are characterized by facies heterogeneity of channelized reservoir sands and non-reservoir muds. Main reservoir bodies of the McMurray Formation are fluvial and estuarine channel-point bar complexes which are interbedded with fine-grained deposits formed in floodplain, tidal flat, and estuarine bay. The Wabiskaw deposits (basal member of the Clearwater Formation) commonly comprise sheet-shaped offshore muds and sands, but occasionally show deep-incision into the McMurray deposits, forming channelized reservoir sand bodies of oil sands. In Canada, bitumen of oil sands deposits is produced by surface mining or in-situ thermal recovery processes. Bitumen sands recovered by surface mining are changed into synthetic crude oil through extraction and upgrading processes. On the other hand, bitumen produced by in-situ thermal recovery is transported to refinery only through bitumen blending process. The in-situ thermal recovery technology is represented by Steam-Assisted Gravity Drainage and Cyclic Steam Stimulation. These technologies are based on steam injection into bitumen sand reservoirs for increase in reservoir in-situ temperature and in bitumen mobility. In oil sands reservoirs, efficiency for steam propagation is controlled mainly by reservoir geology. Accordingly, understanding of geological factors and characteristics of oil sands reservoir deposits is prerequisite for well-designed development planning and effective bitumen production. As significant geological factors and characteristics in oil sands reservoir deposits, this study suggests (1) pay of bitumen sands and connectivity, (2) bitumen content and saturation, (3) geologic structure, (4) distribution of mud baffles and plugs, (5) thickness and lateral continuity of mud interbeds, (6) distribution of water-saturated sands, (7) distribution of gas-saturated sands, (8) direction of lateral accretion of point bar, (9) distribution of diagenetic layers and nodules, and (10) texture and fabric change within reservoir sand body.

  • PDF

Sequence Stratigraphy of the Yeongweol Group (Cambrian-Ordovician), Taebaeksan Basin, Korea: Paleogeographic Implications (전기고생대 태백산분지 영월층군의 순차층서 연구를 통한 고지리적 추론)

  • Kwon, Y.K.
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.317-333
    • /
    • 2012
  • The Yeongweol Group is a Lower Paleozoic mixed carbonate-siliciclastic sequence in the Taebaeksan Basin of Korea, and consists of five lithologic formations: Sambangsan, Machari, Wagok, Mungok, and Yeongheung in ascending order. Sequence stratigraphic interpretation of the group indicates that initial flooding in the Yeongweol area of the Taebaeksan Basin resulted in basal siliciclastic-dominated sequences of the Sambangsan Formation during the Middle Cambrian. The accelerated sea-level rise in the late Middle to early Late Cambrian generated a mixed carbonate-siliciclastic slope or deep ramp sequence of shale, grainstone and breccia intercalations, representing the lower part of the Machari Formation. The continued rise of sea level in the Late Cambrian made substantial accommodation space and activated subtidal carbonate factory, forming carbonate-dominated subtidal platform sequence in the middle and upper parts of the Machari Formation. The overlying Wagok Formation might originally be a ramp carbonate sequence of subtidal ribbon carbonates and marls with conglomerates, deposited during the normal rise of relative sea level in the late Late Cambrian. The formation was affected by unstable dolomitization shortly after the deposition during the relative sea-level fall in the latest Cambrian or earliest Ordovician. Subsequently, it was extensively dolomitized under the deep burial diagenetic condition. During the Early Ordovician (Tremadocian), global transgression (viz. Sauk) was continued, and subtidal ramp deposition was sustained in the Yeongweol platform, forming the Mungok Formation. The formation is overlain by the peritidal carbonates of the Yeongheung Formation, and is stacked by cyclic sedimentation during the Early to Middle Ordovician (Arenigian to Caradocian). The lithologic change from subtidal ramp to peritidal facies is preserved at the uppermost part of the Mungok Formation. The transition between Sauk and Tippecanoe sequences is recognized within the middle part of the Yeongheung Formation as a minimum accommodation zone. The global eustatic fall in the earliest Middle Ordovician and the ensuing rise of relative sea level during the Darrwillian to Caradocian produced broadly-prograding peritidal carbonates of shallowing-upward cyclic successions within the Yeongheung Formation. The reconstructed relative sea-level curve of the Yeongweol platform is very similar to that of the Taebaek platform. This reveals that the Yeongweol platform experienced same tectonic movements with the Taebaek platform, and consequently that both platform sequences might be located in a body or somewhere separately in the margin of the North China platform. The significant differences in lithologic and stratigraphic successions imply that the Yeongweol platform was much far from the Taebaek platform and not associated with the Taebaek platform as a single depositional system. The Yeongweol platform was probably located in relatively open shallow marine environments, whereas the Taebaek platform was a part of the restricted embayments. During the late Paleozoic to early Mesozoic amalgamations of the Korean massifs, the Yeongweol platform was probably pushed against the Taebaek platform by the complex movement, forming fragmented platform sequences of the Taebaeksan Basin.