• Title/Summary/Keyword: diacylglycerols

Search Result 14, Processing Time 0.027 seconds

Studies on the Lipid Classes of Nicotiana tabacum L. Seed Oil

  • Waheed, Amran;Mahmud, Shahid;Javed, Muhammad Akhtar;Saleem, Muhammad
    • Natural Product Sciences
    • /
    • v.7 no.4
    • /
    • pp.110-113
    • /
    • 2001
  • The lipid classes constituents; hydrocarbons, wax esters, sterol esters, triacylglycerols, free fatty acids, 1,3-diacylglycerols, 1,2-diacylglycerols, free sterols, 2-monoacylglycerols, 1-monoacylglycerols, phosphatidylethanolamines, phosphatidylcholines, lysophosphatidylethanolamines and phosphatidylinositols of Nicotiana tabacum L. seeds oil were investigated by thin layer and gas chromatography. Palmitic, oleic and linoleic acids were the major components in all lipid classes studied.

  • PDF

In Vitro Evidence of Anti-Inflammatory and Anti-Obesity Effects of Medium-Chain Fatty Acid-Diacylglycerols

  • Yu, Seungmin;Choi, Jong Hun;Kim, Hun Jung;Park, Soo Hyun;Go, Gwang-woong;Kim, Wooki
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1617-1627
    • /
    • 2017
  • Dietary approaches using structured lipids, including medium-chain fatty acids and diacylglycerols, have been adopted for the prevention of obesity-induced chronic inflammation. In an extension to previous studies, medium-chain fatty acid-diacylglycerol enriched dietary oil (MCDG) was prepared by interesterification of canola oil and medium-chain fatty acid-triacylglycerols. The consequent MCDG product was applied to RAW264.7 macrophages followed by the assessment of multiple inflammatory responses. Compared with conventionally used canola and olive oil controls, MCDG suppressed macrophage phagocytosis, as assessed by the uptake of microsphere beads. Furthermore, the production of IL-6 and $TNF-{\alpha}$, transcription of COX-2 and iNOS, and expression of CD80 on cell surfaces were downregulated by MCDG in LPS-stimulated macrophages. Subsequently, differentiated 3T3-L1 adipocytes were evaluated for proinflammatory cytokine production and lipid accumulation. IL-6 production was marginally affected and lipid accumulation was inhibited by MCDG. Taken together, these results suggest that MCDG has potential as an alternative oil for cooking in order to prevent obesity-induced inflammation.

Lipid Studies of Carum Roxburghianum Seeds

  • Waheed, Amran;Mahmud, Shahid;Saleem, Muhammad;Yamin, Muhammad;Khan, Muhammad Naeem
    • Natural Product Sciences
    • /
    • v.9 no.3
    • /
    • pp.200-203
    • /
    • 2003
  • Total lipids extracted from the powdered seeds of Carum roxburghianum were fractionated into hydrocarbons (0.30%), wax esters (0.30%), sterol esters (1.35%), triacylglycerols (72.41%), free fatty acids (6.06%), 1,3-diacylglycerols (4.60%), 1,2- diacylglycerols (0.64%), glycolipids (5.10%), sterols (1.20%), 2-monoacylgylcerols (3.18%), 1-monoacylglycerols (1.46%), phosphatidylethanolamines (1.08%) phosphatidylcholines (0.40%), lysophosphatidylethanolamines (1.48%) and phosphatidylinositols (0.44%) with the help of TLC. The fatty acid composition of all the lipid fractions was determined after converting them into their methyl esters with $BF_3-methanol$ reagent and then analyzing them by GC. Oleic acid was found as a major component in all the lipid classes, whereas palmitic, linoleic and linolenic acids were present in lesser quantities. Arachidic acid was identified as a minor component in only seven out of twelve lipid classes.

Signal Transduction Mechanisms Mediating Surfactant Phospholipid Secretion in Isolated Type II Cell (Type II Cell 분리체로부터 Surfactant 인지질의 분비를 매개하는 신호변환 기전)

  • Park, Sung-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.2
    • /
    • pp.123-127
    • /
    • 1996
  • Secretion of surfactant phospholipid can be stimulated by a variety of agonists acting via at least three different signal transduction mechanisms. These include the adenylate cyclase system with activation of cAMP-dependent protein kinase; activation of protein kinase C either directly or subsequent to activation of phosphoinositide-specific phospholipase C and generation of diacylglycerols and inositol trisphosphate; and a third mechanism that involves incresed $Ca^{2+}$ levels and a calmodulin-dependent step. ATP stimulates secretion via all three mechanisms. The protein kinase C pathway is also coupled to phopholipase D which, acting on relatively abundant cellular phospholipids, generates diacylglycerols that further activate protein kinase C. Sustained protein kinase C activation can maintain phosphatidylcholine secretion for a prolonged period of time. It is likely that interactions between the different signaling pathways have an important role in the overall physiological regulation of surfactant secretion.

  • PDF

Studies on the Fatty Acid Distribution in the Position of Triacylglycerols from the Seed of Pinus Koraiensis by Stereo-specific Analysis and $^{13}C-NMR$ Techniques (입본특이적(立本特異的) 방법(方法)과 $^{13}C-NMR$ 기법(技法)에 의한 잣기름의 트리아실 글리세롤의 구성지방산(構成脂肪酸)의 분포(分布)에 관한 연구(硏究))

  • Woo, Hyo-Kyeng;Kim, Seung-Jin;Joh, Yong-Goe
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.35-44
    • /
    • 1998
  • All the triacylglycerols including the molecular species having ${\Delta}^5$-unsaturated fatty acids from the seeds of Pinus Koraiensis, were split into a mixture of diacylglycerols by a Grignard reagent prepared with allyl bromide without arousing acyl chains of a glycerol moiety to migration, and were also easily partially hydrolyzed to diacylglycerols by pancreatic lipase. (S)-(+)-(1-naphthyl)ethyl urethane(NEU) derivatives of the diacylglycerol mixture derived from the triacylglycerols were fractionated into sn-1, 3-, sn-1, 2- and sn-2, 3-DG-NEU by silica-HPLC and the fatty acid composition of these fractions was analysed. $C_{18:1{\omega}9}$ is distributed evenly in the three positions of TG with $C_{18:2{\omega}6}$ mainly located in sn-2 position, while ${\Delta}^5$-unsaturated fatty acids such as ${\Delta}^{5.9}-C_{18:2}$, ${\Delta}^{5.9.12}-C_{18:3}$ and ${\Delta}^{5.11.14}-C_{20:3}$ are exclusively present in the sn-3 position. These results could be confirmed by $^{13}C$-NMR spectroscopy : the signals at $^{\delta}$173.231 ppm and $^{\delta}$172.811 ppm of the carbonyl carbon of acyl moieties indicate the presence of saturated acids and/or $C_{18:1{\omega}9}$ (oleic acid) in the ${\alpha}({\alpha}')$- or ${\beta}$- positions, and $C_{18:2{\omega}6}$ including $C_{18:1{\omega}9}$ in the ${\beta}$-position, respectively. In addition, the resonance at $^{\delta}$173.044 ppm suggested a location of ${\Delta}^5$-unsaturated fatty acid moiety in the ${\alpha}({\alpha}')$-position.

Changes of Functional Components Present in Lipid Foods during Cooking (유지식품의 조리 중 기능성분의 변화)

  • Choe, Eun-Ok
    • Korean journal of food and cookery science
    • /
    • v.21 no.5
    • /
    • pp.742-758
    • /
    • 2005
  • Lipid-based functional components present in foods undergo chemical changes during cooking. Useful n-3 and n-6 fatty acids, phytosterols, tocopherols, and carotenoids are degraded by thermal cooking such as frying, resulting in loss of their physiological functions. However, conjugated linoleic acid and diacylglycerols can be formed during heating, which would be beneficial to the health. Degree of degradation and formation of the functional components depends on the cooking method, cooking temperature and time, lipid matrix containing the components, and the presence of other materials. Although it is clear that the content of each functional component varies during long-heating in a model system consisting of small numbers of components, the real foods cooked in a small scale for a limited cooking time do not show highly significant differences in the functional components contents from raw food materials.

Characterizing LipR from Pseudomonas sp. R0-14 and Applying in Enrichment of Polyunsaturated Fatty Acids from Algal Oil

  • Yang, Wenjuan;Xu, Li;Zhang, Houjin;Yan, Yunjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1880-1893
    • /
    • 2015
  • In this study, Pseudomonas R0-14, which was isolated from Arctic soil samples, showed a clear halo when grown on M9 medium agarose plates containing olive oil-rhodamine B as substrate, suggesting that it expressed putative lipase(s). A putative lipase gene, lipR, was cloned from R0-14 by genome walking and Touchdown PCR. lipR encodes a 562-amino-acid polypeptide showing a typical α/β hydrolase structure with a catalytic triad consisting of Ser153-Asp202-His260 and one α-helical lid (residues 103-113). A phylogenetic analysis revealed that LipR belongs to the lipase subfamily I.3. LipR was successfully expressed in Escherichia coli, purified, and biochemically characterized. Recombinant LipR exhibited its maximum activity towards p-nitrophenyl butyrate at pH 8.5 and 60℃ with a Km of 0.37 mM and a kcat of 6.42 s-1. It retained over 90% of its original activity after incubation at 50℃ for 12 h. In addition, LipR was activated by Ca2+, Mg2+, Ba2+, and Sr2+, while strongly inhibited by Cu2+, Zn2+, Mn2+, and ethylenediaminetetraacetic acid. Moreover, it showed a certain tolerance to organic solvents, including acetonitrile, isopropanol, acetone, methanol, and tert-butanol. When algal oil was hydrolyzed by LipR for 24 h, there was an enrichment of n-3 long-chain polyunsaturated fatty acids, including eicosapentaenoic acid (1.22%, 1.65-fold), docosapentaenoic acid (21.24%, 2.04-fold), and docosahexaenoic acid (36.98%, 1.33-fold), and even a certain amount of diacylglycerols was also produced. As a result, LipR has great prospect in industrial applications, especially in food and/or cosmetics applications.

Biological Significance of Essential Fatty Acids/Prostanoids/Lipoxygenase-Derived Monohydroxy Fatty Acids in the Skin

  • Ziboh, Vincent-A.;Cho, Yunhi;Mani, Indu;Xi, Side
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.747-758
    • /
    • 2002
  • The skin displays a highly active metabolism of polyunsaturated fatty acids (PUFA). Dietary deficiency of linoleic acid (LA), an 18-carbon (n-6) PUFA, results in characteristic scaly skin disorder and excessive epidermal water loss. Although arachidonic acid (AA), a 20-carbon (n6) PUFA, is metabolized via cyclooxygenase pathway into predominantly prostaglandin $E_2(PGE_2)$ and $PGF_{2{\alpha}}$, the metabolism of AA via the 15-lipoxygenase (15-LOX) pathway, which is very active in skin epidermis and catalyzes the transformation of M into predominantly 15S-hydroxyeicosatetraenoic acid (15S-HETE). Additionally, the 15-LOX also metabolizes the 18-carbon LA into 13S-hydroxyoctadecadienoic acid (13S-HODE), respectively. Interestingly, 15-LOX catalyzes the transformation of $dihomo-{\gamma}-linolenic$ acid (DGLA), derived from dietary gamma-linolenic acid, to 15S-hydroxyeicosatrienoic acid (15S-HETrE). These monohydroxy fatty acids are incorporated into the membrane inositol phospholipids which undergo hydrolytic cleavage to yield substituted-diacylglycerols such as 13S-HODE-DAG from 13S-HODE and 15S-HETrE-DAG from 15S-HETrE. These substituted-monohydroxy fatty acids seemingly exert anti-inflammatory/antiproliferative effects via the modulation of selective protein kinase C as well as on the upstream/down-stream nuclear MAP-kinase/AP-1/apoptotic signaling events.

Characterization of Fish Oil Extracted from Fish Processing By-products

  • Byun, Hee-Guk;Eom, Tae-Kil;Jung, Won-Kyo;Kim, Se-Kwon
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.1
    • /
    • pp.7-11
    • /
    • 2008
  • To improve the utilization of fish processing by-products, fish oils were extracted from hoki, yellowfin sole, mackerel, and horse mackerel, and their compositions were examined. The proximate compositions obtained for these 4 species of by-product revealed they were composed of 68.1$\sim$78.1% moisture, 1.2$\sim$1.6% ash, and 13.8$\sim$18.8% protein. Fish oils extracted from the hoki, yellowfin sole, mackerel, and horse mackerel were 5.5, 9.4, 13.4, and 10.3%, respectively. The total lipids extracted from the by-products of the 4 species were 6.21, 10.43, 12.81 and 10.06%, of which neutral lipids accounted for 77.38, 77.46, 87.21 and 86.79%, respectively. Neutral lipid analysis by TLC showed that triacylglycerol was the major component, while 1,3- and 1,2-diacylglycerols, free fatty acids, free sterols, and sterol esters were present as minor components. The major fatty acids were palmitic acid, stearic acid, and oleic acid. DHA and EPA were contained at levels of 0.2$\sim$4.7% and 3.7$\sim$9.5%, respectively, in the 4 types of fish oil. The fish oils extracted from the dark muscle fish, mackerel and horse mackerel, had greater polyunsaturated fatty acid (PUFA) contents than those of the white muscle fish species, hoki and yellowfin sole.

Identification of triacylglycerols in coix seed extract by preparative thin layer chromatography and liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry

  • Sim, Hee-Jung;Lee, Seul gi;Park, Na-Hyun;Kim, Youna;Cho, Hyun-Woo;Hong, Jongki
    • Analytical Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.102-111
    • /
    • 2017
  • Here we reported a methodology for identification of triacylglycerols (TAGs) and diacylglycerols (DAGs) in coix seed by preparative thin layer chromatography (prep-TLC) and non-aqueous reversed-phase liquid chromatography (NARP LC)-atmospheric pressure chemical ionization (APCI) tandem mass spectrometry (MS/MS). Lipid components were extracted from coix seed by reflux extraction using n-hexane for 3 hr. TAGs and DAGs in coix seed extract were effectively purified and isolated from matrix interferences by prep-TLC and then analyzed by LC-APCI-MS and MS/MS for identification. TAGs were effectively identified taking into consideration of their LC retention behavior, APCI-MS spectra patterns, and MS/MS spectra of $[DAG]^+$ ions. In MS/MS spectra of TAGs, diacylglycerol-like fragment $[DAG]^+$ ions were useful to identify TAGs with isobaric fragment ions. Based on an established method, 27 TAGs and 8 DAGs were identified in coix seed extract. Among them, 15 TAGs and 8 DAGs were for the first time observed in coix seed. Interestingly, some of TAGs isolated by prep-TLC were partly converted into DAGs through probably photolysis process during storing in room temperature. Thus, degradation phenomenon of TAGs should be considered in the quality evaluation and nutritional property of coix seed. LC-APCI-MS/MS combined with prep-TLC will be practical method for precise TAG and DAG analysis of other herbal plants.