• Title/Summary/Keyword: dextransucrase

Search Result 44, Processing Time 0.02 seconds

Sythesis of Highly Branched Isomaltodextrin by Acceptor Reaction using Dextransucrases from L. mesenteroides B-742CB and B-512FMCM (Leuconostoc mesenteroides B-742CB와 B-512FMCM Dextransucrase의 수용체 반응을 이용한 고분지 Isomaltodextrin의 생산)

  • 김문수;이선옥;류화자;강희경;유선균;장석상;김도원;김도만;김성혁
    • KSBB Journal
    • /
    • v.16 no.2
    • /
    • pp.200-206
    • /
    • 2001
  • In this study we tried to optimize the enzyme reaction conditions for the synthesis of highly branched isomaltodextrin (Mw > 2.5 kDa) using two dextransucrases from L. mesenteroides B-742CB and B-512FMCM that are dextransucrase constitutive mutants. As the concentration of sucrose or the ratio of maltose to sucrose increased, the amount of dextran decreased and the number and the amount of acceptor-products (of sucrose or maltose) increased. With high sucrose concentration (over 34%), there was more branched isomaltodextrin (as acceptor products) than dextran. When the ratio of sucrose to maltose was 2.5, there produced 86.7% of isomaltodextrin were produced. The Mw of dextrans, however, was over 2${\times}$10(sup)6 and there was no significant amounts of branched clinical dextran or high molecular weight oligosaccharides. With the combined activities of B-742CB dextransucrase and B-512FMCM dextransucrase we could synthesize high molecular weight branched isomaltodextrin (Mw>2.5 kDa). The high molecular weight dextran was composed of high branches as B-742CB dextran.

  • PDF

Dextransucrase Activity of Leuconostoc sp. Strains Isolated from Kimchi (김치에서 분리한 Leuconostoc 속 균주들이 생산하는 Dextransucrase의 활성)

  • Hahn, Young-Sook;Oh, Ji-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.1
    • /
    • pp.86-89
    • /
    • 1999
  • The liquid of ripened Kimchi was spread on phenylethylalcohol sucrose medium and incubated at 20$^{\circ}C$ for 2 days in order to isolate Leuconostoc sp. strains. Twenty isolated colonies were identified as Leuconostoc sp. strains from sugar fermentation test. Dextransucrase activities of the isolated strains were determined and the strain J-2 showed highest activity. The morphological, cultural and physiological studies on these 5 strains showed that gram(+), spores(-), motility(-) and produced gas from glucose, acid in Whittenbury C. Only Y-1 strain produced ammonia from arginine.

  • PDF

Modification of Pullulan Using Dextransucrase and Characterization of the Modified Pullulan. (덱스트란수크라제를 이용한 플루란의 변형 및 특성조사)

  • ;;;;;;John F. Robyt
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.3
    • /
    • pp.264-268
    • /
    • 1998
  • Many enzymes catalyze a primary reaction and/or secondary reaction. Dextransucrase usually synthesizes dextran from sucrose as a primary reaction. The secondary reaction of dextransucrase is the transfer of glucose from sucrose to carbohydrate accepters. We have reacted dextransucrase from Leuconostoc mesenteroides B-742CB with sucrose and pullulan as an acceptor under different reaction conditions; various concentrations of pullulan, enzyme, sucrose and different pHs and temperatures of reaction digests. The yield of modified pullulan was 57%(<${\pm}$5%) of theoretical under the reaction condition of pH 5.2, temperature 28$^{\circ}C$, 0.37% of pullulan, and 0.l U/$m\ell$ of dextransucrase. Modified products were more resistant against the hydrolysis of pullulanase and endo-dextranase than those of native pullulan. The positions of glucose substitution in the modified products were determined by methylation followed by acid hydrolysis and analyzed by TLC. The products were modified by the addition of glucose to the position of C3, C4, C6 free hydroxyl group of glucose residues in the pullulan.

  • PDF

Cloning and Characterization of a Gene Coding for a Dextransucrase from Leuconostoc mesenteroides B-742CB (Leuconostoc mesenteroides B-742CB로부터 Dextransucrase를 Coding하는 유전자 분리 및 특성 연구)

  • 박미란;이소영;류화자;김호상;강희경;유선균;조성용;조동련;김도만
    • KSBB Journal
    • /
    • v.16 no.2
    • /
    • pp.188-199
    • /
    • 2001
  • A gene encoding the dextransucrase(dsCB) that synthesizes mostly $\alpha-(1\rightarrow6)$ linked dextran with low amount(10%) of $\alpha-(1\rightarrow3)$ branching was cloned and sequenced from Leuconostoc mesenteroides B-742CB. The 6.1 kbp DNA fragment carrying dsCB showed one open reading frame(ORF) composed of 4,536bp. The deduced amino acid sequence shows that it begins from the start codon(ATG) at position 698 of the cloned DNA fragment and extends to the termination condon(TAA) at position 5,223. The enzyme is consisted of 1,508 amino acids and has an calculated molecular mass of 168.6kDa. This calculated Mw was in good agreement with an activity band of 170kDa on non-denaturing SDS-PAGE. A recombinant E. coli DH5 $alpha$ harboring pDSCB produced extracellular dextransucrase in 2% sucrose medium, and synthesized both soluble and insoluble dextran. To compare the properties of enzyme with B-742CB dextransucrase, the acceptor reaction, hydrolysis of dextran and methylation were performed. The expressed enzyme showed the same properties as B-742CB dextransucrease, but its ability to synthesize $\alpha-(1\rightarrow3)$ branching was lower than that of B-742CB dextransucrase. In order to identify the critical amino acid residues known as conserved regions related to catalytic activity, Asp-492 was replaced with Asn. D492N resulted in a 1.6 fold decrease in specific activity.

  • PDF

Buffering Effects of Calcium Salts in Kimchi: Lowering Acidity, Elevating Lactic Acid Bacterial Population and Dextransucrase Activity

  • Seo, Eun-Chae;Moon, Jin-Seok;Jung, Jee-Yun;Kim, Ji-Sun;Eom, Hyun-Ju;Kim, So-Young;Yoon, Hyang-Sik;Han, Nam-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1644-1649
    • /
    • 2009
  • This study investigates the buffering effects of calcium salts in kimchi on the total acidity, microbial population, and dextransucrase activity. Calcium chloride or calcium carbonate was added to dongchimi-kimchi, a watery radish kimchi, and the effects on various biochemical attributes were analyzed. The addition of 0.1% calcium chloride produced a milder decrease in the pH after 24 days of incubation, which allowed the lactic acid bacteria to survive longer than in the control. In particular, the heterofermentative Leuconostoc genus population was 10-fold higher than that in the control. When sucrose and maltose were also added along with the calcium salts, the dextransucrase activity in the kimchi was elevated and a higher concentration of isomaltooligosaccharides was synthesized when compared with the control. Calcium chloride was determined as a better activator compound of dextransucrase than calcium carbonate, probably because of its higher solubility. Therefore, the results of this study confirm the ability of the proposed approach to modulate the kimchi fermentation process and possibly enhance the quality of kimchi based on the addition of dietary calcium salts.

Functional, Genetic, and Bioinformatic Characterization of Dextransucrase (DSRBCB4) Gene in Leuconostoc mesenteroides B-1299CB4

  • Kang, Hee-Kyoung;Kim, Young-Min;Kim, Do-Man
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1050-1058
    • /
    • 2008
  • A gene encoding a dextransucrase (dsrBCB4) that synthesizes only ${\alpha}$-1,6-linked dextran was cloned from Leuconostoc mesenteroides B-1299CB4. The coding region consisted of an open reading frame (ORF) of 4,395 bp that coded a 1,465-amino-acids protein with a molecular mass of 163,581 Da. The expressed recombinant DSRBCB4 (rDSRBCB4) synthesized oligosaccharides in the presence of maltose or isomaltose as an acceptor, plus the products included ${\alpha}$-1,6-linked glucosyl residues in addition to the maltosyl or isomaltosyl residue. Alignments of the amino acid sequence of DSRBCB4 with glucansucrases from Streptococcus and Leuconostoc identified conserved amino acid residues in the catalytic core that are critical for enzyme activity. The mutants D530N, E568Q, and D641N displayed a 98- to 10,000-fold reduction of total enzyme activity.

Properties of Dextransucrase from Leuconostoc mesenteroides Isolated from Sikhae

  • Rhee, Suk-Hyung;Lee, Cheal-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.3
    • /
    • pp.176-181
    • /
    • 1991
  • Studies on the optimum conditions for dextran production and the properties of dextransucrase (DS) were performed with Leuconostoc mesenteroides from Sikhae and Leuconostoc mesenteroides NRRL B-512(F). Dextransucrases were partially purified by lyophilization of the culture supernatant and subsequent gel chromatography on Bio-Gel A-5(m). The storage stabilities of Sikhae DS and B-512(F) DS were decreaed by the addition of dextranase. The optimum conditions for the enzyme stability were pH 5 and below $30^{\circ}C$. The B-512(F) DS lost the activity at pH 4, while Sikhae DS had 30% of the activity at the same pH. The activity of DS was decreased by EDTA. confirming the metalloprotein character of the enzymes, and was restored by the addition of calcium ions. Concanavalin A completely removed the activity of DSs, confirming the glycoprotein character of the enzymes.

  • PDF

Modification of Acetobacter xylinum Bacterial Cellulose Using Dextransucrase and Alternansucrase

  • Kim, Do-Man;Kim, Young-Min;Park, Mi-Ran;Park, Don-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.704-708
    • /
    • 1999
  • In addition to catalyzing the synthesis of glucan from sucrose as a primary reaction, glucansucrase also catalyzes the transfer of glucose from sucrose to other carbohydrates that are present or are added to the reaction digest. Using dextransucrase and altemansucrase, prepared from Leuconostoc mesenteroides B-742CBM and B-1355C, respectively, we modified the bacterial cellulose in Acetobacter xylinum ATCC10821 culture, and then produced a characteristic cellulose that is soluble and has a new structure. There were also some partially modified insoluble cellulose and oligosaccharides in the modification culture. After methylation and following acid hydrolysis of both the soluble and insoluble glucans, there were ($1{\rightarrow}4$) as well as ($1{\rightarrow}6$) and ($1{\rightarrow}3$) glycosidic linkages in the soluble glucan.

  • PDF

Transglycosylation Reaction on Cellobiose by Dextansucrase of Leuconostoc mesenteroides B512FMC/6HG8 (Leuconostoc mesenteroides B512FMC/6HG8가 생산하는 Dextransucrase에 의한 Cellobiose의 당전이반응)

  • 강현록;양지영;이현규
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.5
    • /
    • pp.802-806
    • /
    • 2000
  • The transglycosylation reaction by dextansucrase from Leuconostoc mesenteroides B512FMC/6HG8 was investigate with cellobiose as an acceptor molecule and sucrose as a donor. he optimal conditions of transglycosylation on cellobiose were found that the ration of sucrose to cellobiose was 3:1, the amount of enzyme was 2U/mL, the ionic strength of buffer was 25 mM, pH was 5.0 and reaction temperature was $25^{\circ}C$. also, acceptor products of cellobiose by transglycosylation were a series of oligosaccharides showing the degree of plymenzation of 6.

  • PDF

Modification of Starch using Dextransucrase and Characterization of the Modified Starch. (덱스트란수크라제를 이용한 전분의 변형 및 특성 조사)

  • ;;;;;John E. Robyt
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.2
    • /
    • pp.143-150
    • /
    • 1998
  • Many enzymes catalyze a primary reaction and/or secondary reaction. Dextransucrase usually synthesize dextran from sucrose as a primary reaction. The secondary reaction of dextransucrase is the transfer of glucose from sucrose to carbohydrate accepters. We have reacted dextransucrase from Leuconostoc mesenteroides B-742CB with sucrose and starches; granule or gelatinized starches, and Small or Potato starches. The yield of modified starch was ranged from 46% to 72%(s.d.<${pm}$5%) of theoretical depends on various reaction conditions. Modified products were more resistant against the hydrolysis of ${alpha}$-amylase, isoamylase, pullulanase and endo-dextranase than those of native starch. Based on the reactions from enzyme hydrolysis and methylation followed by acid hydrolysis modification of granule starch was more efficient than the modification of gelatinized starch. After modification of granule starch with dextransucrase, there produced a soluble modified starch. After modification the starch granules were fractionated to small size. The positions of glucose substitution of the modified products were determined by methylation followed by acid hydrolysis and analyzed by TLC. The products were modified by the addition of glucose to the position of C3, C4 and C6 free hydroxyl group of glucose residues in the starch.

  • PDF