• Title/Summary/Keyword: dew

Search Result 314, Processing Time 0.033 seconds

Analysis of Water Transport through Measurement of Temperature and Relative Humidity in PEMFC at OCV (개방회로 상태 PEMFC 내부 온도와 습도 측정을 통한 수분투과 분석)

  • KIM, TAEHYEONG;HAN, JAESU;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.353-362
    • /
    • 2022
  • In this study, water diffusion in proton exchange membrane fuel cell at open circuit voltage (OCV) was analyzed through experiment. First, the reliability of the micro-sensor (SHT31) was verified. It was concluded the micro-sensor has an excellent reliability at 60℃ and 70℃. After the sensor reliability test, the temperature and relative humidity measurement in bipolar-plate was conducted at OCV. To analyze water distribution and water flux, the temperature and relative humidity was converted into dew point. To the end, it was found water concentration affects water diffusion.

Optical(Interferometric) Measurements of Vapor Deposition Growth Rate and Dew Points in Combustion Gases (빛의 간섭현상을 이용한 증기용착 성장속도 측정법의 실험적 연구)

  • 김상수;송영훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.343-348
    • /
    • 1986
  • An optical interference method was developed for measuring rapidly growing and evaporating liquid condensate films (e.g., Na$_{2}$SO$_{4}$, $K_{2}$SO$_{4}$) on solid surface exposed to flowing combustion product gases at film thicknesses well below the onset of complications due to run-off. To develop this optical system, this study investigated the optical parameters (e.g., polarization state, incident angle, target roughness, etc.) Trends for the Na$_{2}$SO$_{4}$(l) and $K_{2}$SO$_{4}$(l) deposition rates as a function of target temperature using this optical measuring system agree with the theoretical prediction of the vapor deposition. This study was able to extend the experimental range for vapor plus condensed phase transport and deposition. While previously unable to measure the evaporation rates interferometrically, these rates are estimated from the results of the investigation of polarization states.

Manufacture of Water-Resistant Corrugated Fiberboard Boxes for Agricultural Products in the Cold Chain System (IV) - Measurement and analysis of storage condition, distribution route, and packaging method for selected agricultural products - (농산물 저온유통용 내수골판지 상자의 제조(제4보) - 대상농산물별 저온유통조건, 유통경로 및 포장규격 조사 분석 -)

  • Lee Myoung-Hoon;Jo Jung-Yeon;Min Choon-Ki;Shin Jun-Seop
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.1 s.113
    • /
    • pp.62-69
    • /
    • 2006
  • This study was carried out to measure and analyze the storage condition, distribution route, and packaging method of four selected agricultural products(small tomato, cabbage, peach, and carrot) in the cold chain system. It was shown that dew-forming phenomenon by fruits and vegetables deteriorates the agricultural product quality and physical properties of corrugated fiberboard box during the cold chain system. The compressive strength deterioration in corrugated fiberboard boxes was much greater for single wall(SW) corrugated fiberboard containers than for double wall(DW) in low temperature-high humidity condition. To reduce the deterioration of box and dew-forming phenomenon, water-repellency treatment should be over $R_6$. However, water-resistant treatment of corrugated fiberboard containers would be effective under high relative humidity conditions more than 75% RH. It was suggested that functional corrugated fiberboard box packaging would be an optimum method to reduce the deterioration of agricultural products quality by. It was also achieved controlling the relative humidity and temperature during the storage and physical distribution process.

Development and Verification of the Fog Stability Index for Incheon International Airport based on the Measured Fog Characteristics (인천국제공항의 안개 특성에 따른 안개 안정 지수 FSI(Fog Stability Index) 개발 및 검증)

  • Song, Yunyoung;Yum, Seong Soo
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.443-452
    • /
    • 2013
  • The original Fog Stability Index (FSI) is formulated as FSI=$2(T-T_d)+2(T-T_{850})+WS_{850}$, where $T-T_d$ is dew point deficit (temperature-dew point temperature), $T-T_{850}$ is atmospheric stability measure (temperature-temperature at 850 hPa altitude) and $WS_{850}$ is wind speed at 850 hPa altitude. As a way to improve fog prediction at Incheon International Airport (IIA), we develop the modified FSI for IIA, using the meteorological data at IIA for two years from June 2011 to May 2013, the first one year for development and the second one year for validation. The relative contribution of the three parameters of the modified FSI is 9: 1: 0, indicating that $WS_{850}$ is found to be a non-contributing factor for fog formation at IIA. The critical success index (CSI) of the modified FSI is 0.68. Further development is made to consider the fact that fogs at IIA are highly influenced by advection of moisture from the Yellow Sea. One added parameter after statistical evaluation of the several candidate parameters is the dew point deficit at a buoy over the Yellow Sea. The relative contribution of the four parameters (including the new one) of the newly developed FSI is 10: 2: 0.5: 6.4. The CSI of the new FSI is 0.50. Since the developmental period of one year is too short, the FSI should be refined more as the data are accumulated more.

Digital Image Watermarking Algorithm using Integer Block Transform (정수 블록 변환을 이용한 디지털 이미지 워터마킹 알고리즘)

  • Oh Kwan-Jung;Ho Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.5 s.311
    • /
    • pp.57-67
    • /
    • 2006
  • Intellectual property rights are gathering strength theses days. Because digital contents are easily reproduced and distributed by advanced computers and networks. Digital watermarking is one of the best solutions for this problem. Generally, frequency-domain watermarking algorithms are preferred since they are more robust than spatial-domain algorithms. However, coefficients in the frequency domain are floating-point numbers. Thus, it is not easy to manipulate those floating-point coefficients and frequency-domain watermarking algorithms have some limitations in their applications. In order to overcome this difficulty, we employ an integer transform in this paper. In addition, our proposed algerian can extract the watermark from both the spatial and frequency domains. We embed the watermark into a specific bit-plane of mid-frequency coefficients. This is equivalent to the differential energy watermarking (DEW) in the spatial domain. Our simulation results show that the proposed algorithm is imperceptible, good for the watermark payload, and robustness against various attacks. Moreover, it is more efficient than any other algorithm working in only one domain.

Non-stationary frequency analysis of monthly maximum daily rainfall in summer season considering surface air temperature and dew-point temperature (지표면 기온 및 이슬점 온도를 고려한 여름철 월 최대 일 강수량의 비정상성 빈도해석)

  • Lee, Okjeong;Sim, Ingyeong;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.338-344
    • /
    • 2018
  • In this study, the surface air temperature (SAT) and the dew-point temperature (DPT) are applied as the covariance of the location parameter among three parameters of GEV distribution to reflect the non-stationarity of extreme rainfall due to climate change. Busan station is selected as the study site and the monthly maximum daily rainfall depth from May to October is used for analysis. Various models are constructed to select the most appropriate co-variate(SAT and DPT) function for location parameter of GEV distribution, and the model with the smallest AIC(Akaike Information Criterion) is selected as the optimal model. As a result, it is found that the non-stationary GEV distribution with co-variate of exp(DPT) is the best. The selected model is used to analyze the effect of climate change scenarios on extreme rainfall quantile. It is confirmed that the design rainfall depth is highly likely to increase as the future DPT increases.

Canopy Microclimate of Water-Seeding Rice during Internode Elongation Period (담수직파 벼의 신장기 군락내 미기후 특성)

  • Yun, Jin-Il;Shin, Jin-Chul;Yun, Yong-Dae;Park, Eun-Woo;Cho, Seong-In;Hwang, Heon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.4
    • /
    • pp.473-482
    • /
    • 1997
  • Temperature, humidity and wetness duration were monitored for fully developed paddy rice canopies with 3 different structures induced by the seeding method(puddled-soil drill seeding, DS ; hand broadcasting, HB ; machine broadcasting, MB). Within-canopy air temperature averaged over "clear sky" hours during the study period(maximum tillering through heading) was lower than the screen temperature at a nearby standard weather station, especially in the night. The same trend was true for "overcast sky" hours except the diurnal distinction. Vapor pressure within the canopy was high during the daytime and low in the night, making the daytime deviation from outside the canopy more significant on clear days. Under the overcast sky, the canopy maintained a steady 5 to 10% higher vapor pressure than the outside regardless of day or night. Daily maximum temperature was observed to be higher within the canopies with more leaf mass, making MB the highest, HB the lowest, and DS in between. Relative humidity was over 90% in the night and dropped to 70% in the mid-afternoon, but vapor pressure within the canopy was highest at around 13:00 LST. Dew point depression was lowest and, combined with the temperature, the relative humidity was highest in HB. Mean period of wetting duration was in the order of DS>HB>MB, while the dew point depression was greatest in DS.

  • PDF