• Title/Summary/Keyword: developmental toxicity

Search Result 192, Processing Time 0.03 seconds

Stem Cells and Cell-Cell Communication in the Understanding of the Role of Diet and Nutrients in Human Diseases

  • Trosko James E.
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.1
    • /
    • pp.1-14
    • /
    • 2007
  • The term, "food safety", has traditionally been viewed as a practical science aimed at assuring the prevention acute illnesses caused by biological microorganisms, and only to a minor extent, chronic diseases cause by chronic low level exposures to natural and synthetic chemicals or pollutants. "food safety" meant to prevent microbiological agents/toxins in/on foods, due to contamination any where from "farm to Fork", from causing acute health effects, especially to the young, immune-compromised, genetically-predisposed and elderly. However, today a broader view must also include the fact that diet, perse (nutrients, vitamins/minerals, calories), as well as low level toxins and pollutant or supplemented synthetic chemicals, can alter gene expressions of stem/progenitor/terminally-differentiated cells, leading to chronic inflammation and other mal-functions that could lead to diseases such as cancer, diabetes, atherogenesis and possibly reproductive and neurological disorders. Understanding of the mechanisms by which natural or synthetic chemical toxins/toxicants, in/on food, interact with the pathogenesis of acute and chronic diseases, should lead to a "systems" approach to "food safety". Clearly, the interactions of diet/food with the genetic background, gender, and developmental state of the individual, together with (a) interactions of other endogenous/exogenous chemicals/drugs; (b) the specific biology of the cells being affected; (c) the mechanisms by which the presence or absence of toxins/toxicants and nutrients work to cause toxicities; and (d) how those mechanisms affect the pathogenesis of acute and/or chronic diseases, must be integrated into a "system" approach. Mechanisms of how toxins/toxicants cause cellular toxicities, such as mutagenesis; cytotoxicity and altered gene expression, must take into account (a) irreversible or reversal changes caused by these toxins or toxicants; (b)concepts of thresholds or no-thresholds of action; and (c) concepts of differential effects on stem cells, progenitor cells and terminally differentiated cells in different organs. This brief Commentary tries to illustrate this complex interaction between what is on/in foods with one disease, namely cancer. Since the understanding of cancer, while still incomplete, can shed light on the multiple ways that toxins/toxicants, as well as dietary modulation of nutrients/vitamins/metals/ calories, can either enhance or reduce the risk to cancer. In particular, diets that alter the embryo-fetal micro-environment might dramatically alter disease formation later in life. In effect "food safety" can not be assessed without understanding how food could be 'toxic', or how that mechanism of toxicity interacts with the pathogenesis of any disease.

Effects of Ammina on Survival and Growth of the Flounder Larva, Paralichthys olivaceus (넙치, Paralichthys olivaceus 자어의 생존과 성장에 미치는 암모니아의 영향)

  • KIM Hyung-Soo;KIM Heung-Yun;CHIN Pyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.3
    • /
    • pp.488-495
    • /
    • 1997
  • The effects of ammonia on survival and growth of the flounder larva, Paralichthys olivaceus, were examined by a static renewal bioassay method. The $96\;hr-LC_{50}$ with the developmental stages during the period from 1day to 23 day-old larvae ranged 0.273 to 1.023 mg $NH_3/\ell$. Tolerance of the larvae to ammonia toxicity was much sensitive at the early larval stage, and increased with the growth of the larvae. Threshold $96hr-LC_{50}$ in 1, 3 and S day-old larvae after hatching were 0.293, 0.248 and 0.379 mg $NH_3/\ell$, respectively. Survival rate and growth in body weight and body weight of the larva were reduced with increase of ammonia concentration in the range of 0.055 and 0.341 mg $NH_3/\ell$. The no-observable-effect concentration (NOEC) and lowest-observable- effect concentration (LOEC) of the flounder larve were 0.102 and 0.174 mg $NH_3/\ell$ for body length, and 0.151 and 0.198 mg $NH_3/\ell$ for body weight, respectively. Chronic value (ChV), which is the geometric mean of the NOEC and $NH_3/\ell$ to body length of the larvae were 0.124 mg $NH_3/\ell$. The coefficient of variation (CV) for body length was higher at high concentration than at low concentration.

  • PDF

Effect of Manganese Exposure on the Reproductive Organs in Immature Female Rats

  • Kim, Soo In;Jang, Yeon Seok;Han, Seung Hee;Choi, Myeong Jin;Go, Eun Hye;Cheon, Yong-Pil;Lee, Jung Sick;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.16 no.4
    • /
    • pp.295-300
    • /
    • 2012
  • Manganese ($Mn^{2+}$) is a trace element that is essential for normal physiology, and is predominantly obtained from food. Several lines of evidence, however, demonstrated that overexposure to $MnCl_2$ exerts serious neurotoxicity, immunotoxicity and developmental toxicity, particularly in male. The present study aimed to evaluate the effect of 0, 1.0, 3.3, and 10 mg/kg/day doses of $MnCl_2$ on the reproductive organs in the immature female rats. Rats (PND 22; S.D. strain) were exposed to $MnCl_2$ ($MnCl_2{\cdot}4H_2O$) dissolved in drinking water for 2 weeks. The animals were sacrificed on PND 35, then the tissues were immediately removed and weighed. Histological studies were performed using the uteri tissue samples. Serum LH and FSH levels were measured with the specific ELISA kits. Body weights of the experimental group animals were not significantly different from those of control group animals. However, ovarian tissue weights in 1 mg and 3.3 mg $MnCl_2$ dose groups were significantly lower than those of control animals (p<0.05 and p<0.01, respectively). Uterine tissue weights of 3.3 mg dose $MnCl_2$ groups were significantly lower than those of control animals (p<0.01), while the 1 mg $MnCl_2$ dose and 10 mg $MnCl_2$ dose failed to induce any change in uterine weight. Similarly, only 3.3 mg $MnCl_2$ dose could induce the significant decrease in the oviduct weight compared to the control group (p<0.05). Non-reproductive tissues such as adrenal and kidney failed to respond to all doses of $MnCl_2$ exposure. The uterine histology revealed that the $MnCl_2$ exposure could affect the myometrial cell proliferation particularly in 3.3 mg dose and 10mg dose group. Serum FSH levels were significantly decreased in 1mg $MnCl_2$ dose and 10 $MnCl_2$ mg groups (p<0.05 and p<0.01, respectively). In contrast, treatment with 1 mg $MnCl_2$ dose induced a significant increment of serum LH level (p<0.05). The present study demonstrated that $MnCl_2$ exposure is capable of inducing abnormal development of reproductive tissues, at least to some extent, and altered gonadotropin secretions in immature female rats. Combined with the well-defined actions of this metal on GnRH and prolactin secretion, one can suggest the $Mn^{2+}$ might be a potential environmental mediator which is involved in the female pubertal process.

Development of a Test Method for the Evaluation of DNA Damage in Mouse Spermatogonial Stem Cells

  • Jeon, Hye Lyun;Yi, Jung-Sun;Kim, Tae Sung;Oh, Youkyung;Lee, Hye Jeong;Lee, Minseong;Bang, Jin Seok;Ko, Kinarm;Ahn, Il Young;Ko, Kyungyuk;Kim, Joohwan;Park, Hye-Kyung;Lee, Jong Kwon;Sohn, Soo Jung
    • Toxicological Research
    • /
    • v.33 no.2
    • /
    • pp.107-118
    • /
    • 2017
  • Although alternative test methods based on the 3Rs (Replacement, Reduction, Refinement) are being developed to replace animal testing in reproductive and developmental toxicology, they are still in an early stage. Consequently, we aimed to develop alternative test methods in male animals using mouse spermatogonial stem cells (mSSCs). Here, we modified the OECD TG 489 and optimized the in vitro comet assay in our previous study. This study aimed to verify the validity of in vitro tests involving mSSCs by comparing their results with those of in vivo tests using C57BL/6 mice by gavage. We selected hydroxyurea (HU), which is known to chemically induce male reproductive toxicity. The 50% inhibitory concentration ($IC_{50}$) value of HU was 0.9 mM, as determined by the MTT assay. In the in vitro comet assay, % tail DNA and Olive tail moment (OTM) after HU administration increased significantly, compared to the control. Annexin V, PI staining and TUNEL assays showed that HU caused apoptosis in mSSCs. In order to compare in vitro tests with in vivo tests, the same substances were administered to male C57BL/6 mice. Reproductive toxicity was observed at 25, 50, 100, and 200 mg/kg/day as measured by clinical measures of reduction in sperm motility and testicular weight. The comet assay, DCFH-DA assay, H&E staining, and TUNEL assay were also performed. The results of the test with C57BL/6 mice were similar to those with mSSCs for HU treatment. Finally, linear regression analysis showed a strong positive correlation between results of in vitro tests and those of in vivo. In conclusion, the present study is the first to demonstrate the effect of HU-induced DNA damage, ROS formation, and apoptosis in mSSCs. Further, the results of the current study suggest that mSSCs could be a useful model to predict male reproductive toxicity.

Cannabidiol Induces Cytotoxicity and Cell Death via Apoptotic Pathway in Cancer Cell Lines

  • ChoiPark, Won-HyungHyun-Do;Baek, Seung-Hwa;Chu, Jong-Phil;Kang, Mae-Hwa;Mi, Yu-Jing
    • Biomolecules & Therapeutics
    • /
    • v.16 no.2
    • /
    • pp.87-94
    • /
    • 2008
  • In view of obtaining potential anticancer compounds, we studied the inhibitory activity and the cytotoxic effects of a candidate compound in cancer cells. The cytotoxic effects of cannabidiol (CBD) in vitro were evaluated in NIH3T3 fibroblasts, B16 melanoma cells, A549 lung cancer cells, MDA-MB-231 breast cancer cells, Lenca kidney cells and SNU-C4 colon cancer cells. The cells were cultured in various concentrations of CBD for 48 h and 25 ${\mu}$M of CBD for 6-36 h. The cells were observed to exhibit inhibitory effects of the cell viability in their growth, and then cytotoxicity was estimated. The inhibitory activity of CBD was increased in all cancer cells and showed especially strong increment in breast cancer cells. The cytotoxicity of CBD increased in a dose- and time-dependent manner with growth inhibition in all cancer cell lines. Also, to assess the membrane toxicity induced by CBD, we investigated lactate dehydrogenase (LDH) release. After treatment with various concentrations of CBD, LDH release rate of cancer cells was accelerated. On the other hand, in the induction of cell death, caspase-3, -8 and -9 activations were detected in cancer cells after treatment with various concentrations of CBD, and CBD effectively induced activity of caspase-3, -8 and -9 in A549 lung cancer cells, MDAMB-231 breast cancer cells and Renca kidney cells. Therefore these results suggest that CBD has a possibility of anticancer agents and anticancer effects against cancer cells by modulation of apoptotic pathway in the range of 5-80 ${\mu}$M concentration.

Safty of Alternatives for Endocirne Disrupting Substances (내분비계장애물질 대체소재의 안전성)

  • Park, Chan Jin;Kim, Woong;Gye, Myung Chan
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.4
    • /
    • pp.361-374
    • /
    • 2015
  • Endocirne disruptors (EDs) can cause fertility decrease, developmental disorder, and even cancer in animals. Until 90's, EDs were used in various synthetic products including paints, coatings, detergents, plastics, and plasticizers. Currently, in several countries, the production, trade and use of EDs or EDs-suspected chemicals have been regulated while activity to screen the alternatives for EDs including bisphenol-A, phthalate and nonylphenol is active. Although various toxicity test method was developed and applied for screening of alternatives, however, the safety of alternatives has been not fully demonstrated. Some alternatives have high structural similarity with existing EDs, raising the possible risk of endocrine disruption by alternatives. In an effort to develop the safe alternatives, we reviewed the effects of EDs such as bisphenol-A, phthalates, nonylphenol and their substituents. In addition, in-silico analysis for endocrine disrupting activities of some alternatives was presented.

Ameliorating Effect of Selenium against Arsenic Induced Male Reproductive Toxicity in Rats

  • Jalaludeen, Abdulkadhar Mohamed;Lee, Ran;Lee, Won Young;Kim, Dong Hoon;Song, Hyuk
    • Reproductive and Developmental Biology
    • /
    • v.38 no.3
    • /
    • pp.107-114
    • /
    • 2014
  • Oral exposure of humans by excess amounts of arsenic may cause disturbances of the reproductive system. In the present study, such exposure was modelled in rats, with the support of sperm principal parameters and histopathological observations. Male Sprague-Dawley rats were randomly divided into three groups where the group I was served as a normal control, group II was received sodium meta-arsenite as arsenic (10 mg/kg b.w/day) and a combination of sodium meta-arsenite and sodium selenite (3 mg/kg b.w/day) in group III. After 6 weeks, there was no significant change in testis weight and in total motility of all the three experimental groups, whereas, rapid moving spermatozoa, moderately moving spermatozoa and slow moving spermatozoa were significantly decreased in arsenic treated rats as compared to control rats. The other sperm principal parameters like progressiveness, average path velocity, straightness linear velocity (VSL), curvilinear velocity (VCL), straightness, linearity sperm head elongation ratio, area, linearity amplitude of lateral head department (ALH) and beat cross frequency (BCF) were found to be reduced in arsenic intoxicated rats. These results are not correlated with the histological studies. On oral administration of selenium ameliorated the adverse effects of arsenic as compared to arsenic alone treated rats. Our findings clearly demonstrate that administration of selenium could prevent some of the deleterious effects of arsenic in the testis.

Study on Anti-estrogenic Activity of DEHP as an Endocrine Disruption Chemical (내분비 교란성 DEHP의 항-에스트로젠 활성에 관한 연구)

  • Kim, Eun-Joo
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.2
    • /
    • pp.7-15
    • /
    • 2003
  • Di-2-ethylhexyl phthalate (DEHP), is a widely used plasticizer known to be a suspected endocrine disrupter, but its exact effects on aquatic organisms are not yet known. When Japanese medaka (Oryzias latipes) were exposed from the time of hatching to 3 months of age to an aqueous DEHP solution at nominal concentrations of 1, 10, and 50 $\mu\textrm{g}$/l, DEHP treated female fish showed distinct reproductive effect. And the midge (Chironomus riparius.). an aquatic invertebrate, was exposed to DEHP to evaluate the effects on reproductive processes via sediment toxicity. The test endpoints included emergence, sex ratio, fecundity, and the viability of F1 offspring egg ropes. The result implied that the normal developmental and/or reproductive processes in C. riparius had been disrupted when exposed to DEHP, the effect also being displayed in the next generation. In summary, DEHP hinders the development of reproductive organs in the female Japanese medaka and C. riparius.

Altered Gene Profiles using KISTCHIP-400 in MCF-7 cells after Exposure to Di(2-ethylhexyl) Phthalate (DEHP) and Dibutyl Phthalate (DBP)

  • Yun, Hye-Jung;Kim, Youn-Jung;Kim, Eun-Young;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.174-174
    • /
    • 2003
  • There are many synthetic chemicals, such as di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP), used in chemical reaction processes in industry. The establishment of toxicity and detection of synthetic chemicals that may pose a genetic hazard in our enviornment is subjects of great concern at present DEHP, a ubiquitous phthalate plasticizer, induces a wide range of developmental and reproductive toxicities in mammals. DEHP belongs to the large diverse class of peroxisome proliferator compounds, which include herbicides, hypolipidemic drugs. DBP is a plasticizer used to products containing nitrocellulose, polyvinyl acetate, and polyvinyl chloride such as food wraps and blood bags. DBP is also used in cosmetics as a solvent and fixative for perfumes, a suspension agent for solids, an antifoamer, a skin emollient, and hair spray The present study was performed to examine patterns of gene expression in MCF-7 cells following DEHP and DBP exposure. Changes in gene expression were determined by microarray analysis using KISTCHIP-400 including 401 endocrine related genes based on public database and research papers. Of the genes analysis, we determined that genes detected by array showed a 2-fold or greater change in their expression level(increase or decrease). The results of this study demonstrate that a number of genes were differentially expressed in MCF-7 cells but these changes were not significant. Therefore, we keep going this study using microarray analysis and future studies will examine changes of gene expression on time-course and does treatment in variable cell lines.

  • PDF

Differential Diagnosis of Acute Liver Failure in Children: A Systematic Review

  • Berardi, Giuliana;Tuckfield, Lynnia;DelVecchio, Michael T.;Aronoff, Stephen
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.23 no.6
    • /
    • pp.501-510
    • /
    • 2020
  • Purpose: To develop a probability-based differential diagnosis for pediatric acute liver failure (PALF) based on age and socioeconomic status of the country of origin. Methods: Comprehensive literature search using PubMed, EMBASE, and SCOPUS databases was performed. Children 0-22 years of age who met PALF registry criteria were included. Articles included >10 children, and could not be a case report, review article, or editorial. No language filter was utilized, but an English abstract was required. Etiology of PALF, age of child, and country of origin was extracted from included articles. Results: 32 full text articles were reviewed in detail; 2,982 children were included. The top diagnosis of PALF in developed countries was acetaminophen toxicity (9.24%; 95% CredI 7.99-10.6), whereas in developing countries it was Hepatitis A (28.9%; 95% CredI 26.3-31.7). In developed countries, the leading diagnosis of PALF in children aged <1 year was metabolic disorder (17.2%; 95% CredI 10.3-25.5), whereas in developing countries it was unspecified infection (39.3%; CredI 27.6-51.8). In developed countries, the leading diagnosis in children aged >1 year was Non-A-B-C Hepatitis (8.18%; CredI 5.28-11.7), whereas in developing countries it was Hepatitis A (32.4%; CredI 28.6-36.3). Conclusion: The leading causes of PALF in children aged 0-22 years differ depending on the age and developmental status of their country of origin, suggesting that these factors must be considered in the evaluation of children with PALF.