• Title/Summary/Keyword: development scenarios

Search Result 1,028, Processing Time 0.032 seconds

Development of a General Occupational Safety and Health (OSH) Guide for Maintenance Work at Electronics Industry Processing Facilities (전자산업 공정 설비 작업 안전보건가이드 개발)

  • Soyeon Kim;Seunghee Lee;Jeongyeon Park;Taek-hyeon Han;Jae-jin Moon;Ingyun Jung;Kyung Ehi Zoh;Seyoung Kwon;Kwang Jae Chung;Dong-Uk Park
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.34 no.1
    • /
    • pp.18-25
    • /
    • 2024
  • Objectives: The primary aim of this study is to create an Occupational Safety and Health (OSH) guide for high-risk maintenance tasks, specifically one designed for maintenance work (MW) in the electronics industry. Methods: The methodology involved a literature review, field investigations, and discussions. An initial draft of the OSH guide was created and then refined through consultations with experts possessing extensive experience in MW for electronic processes. Results: Specific MW tasks within electronics processing facilities identified as high-risk by the research were selected. A comprehensive OSH guide for these tasks was developed consisting of approximately 11 to 12 components and encompassing about 20-25 pages. Implementing safety and health measures before, during, and after MW is crucial for the protection of maintenance personnel. The guide is enriched with real-case scenarios of industrial accidents and occupational diseases to enhance maintenance workers' comprehension of the OSH principles. For a clearer understanding of and adherence to the safety protocols, the guide incorporates visual aids, including cartoons and photographs. Conclusions: This OSH guide is designed to ensure the protection of workers involved in maintenance activities in the electronics industry. It aligns with global standards set by the International Organization for Standardization (ISO) and Semiconductor Equipment and Material International (SEMI) to ensure a high level of safety and compliance.

Development of Simulation for Estimating Growth Changes of Locally Managed European Beech Forests in the Eifel Region of Germany (독일 아이펠의 지역적 관리에 따른 유럽너도밤나무 숲의 생장변화 추정을 위한 시뮬레이션 개발)

  • Jae-gyun Byun;Martina Ross-Nickoll;Richard Ottermanns
    • Journal of the Korea Society for Simulation
    • /
    • v.33 no.1
    • /
    • pp.1-17
    • /
    • 2024
  • Forest management is known to beneficially influence stand structure and wood production, yet quantitative understanding as well as an illustrative depiction of the effects of different management approaches on tree growth and stand dynamics are still scarce. Long-term management of beech forests must balance public interests with ecological aspects. Efficient forest management requires the reliable prediction of tree growth change. We aimed to develop a novel hybrid simulation approach, which realistically simulates short- as well as long-term effects of different forest management regimes commonly applied, but not limited, to German low mountain ranges, including near-natural forest management based on single-tree selection harvesting. The model basically consists of three modules for (a) natural seedling regeneration, (b) mortality adjustment, and (c) tree growth simulation. In our approach, an existing validated growth model was used to calculate single year tree growth, and expanded on by including in a newly developed simulation process using calibrated modules based on practical experience in forest management and advice from the local forest. We included the following different beech forest-management scenarios that are representative for German low mountain ranges to our simulation tool: (1) plantation, (2) continuous cover forestry, and (3) reserved forest. The simulation results show a robust consistency with expert knowledge as well as a great comparability with mid-term monitoring data, indicating a strong model performance. We successfully developed a hybrid simulation that realistically reflects different management strategies and tree growth in low mountain range. This study represents a basis for a new model calibration method, which has translational potential for further studies to develop reliable tailor-made models adjusted to local situations in beech forest management.

Progress in Nanofiltration-Based Capacitive Deionization (나노여과 기반 용량성 탈이온화의 진전)

  • Jeong Hwan Shim;Rajkumar Patel
    • Membrane Journal
    • /
    • v.34 no.2
    • /
    • pp.87-95
    • /
    • 2024
  • Recent studies explore a wide array of desalination and water treatment methods, encompassing membrane processes such as reverse osmosis (RO), nanofiltration (NF), and electrodialysis (ED) to advanced capacitive deionization (CDI) and its membrane variant (MCDI). Comparative analyses reveal ED's cost-effectiveness in low-salinity scenarios, while hybrid systems (NF-MCDI, RO-NF-MCDI) show improved salt removal and energy efficiency. Novel ion separation methods (NF-CDI, NF-FCDI) offer enhanced efficacy and energy savings. These studies also highlight the efficiency of these methods in treating complex wastewater specific to various industries. Environmental impact assessments emphasize the need for sustainability in system selection. Additionally, the integration of microfabricated sensors into membranes allows real-time monitoring, advancing technology development. These studies underscore the variety and promise of emerging desalination and water treatment technologies. They provide valuable insights for enhancing efficiency, minimizing energy usage, tackling industry-specific issues, and innovating to surpass conventional method limitations. The future of sustainable water treatment appears bright, with continual advancements focused on improving efficiency, minimizing environmental impact, and ensuring adaptability across diverse applications.

Selection of Evaluation Metrics for Grading Autonomous Driving Car Judgment Abilities Based on Driving Simulator (드라이빙 시뮬레이터 기반 자율주행차 판단능력 등급화를 위한 평가지표 선정)

  • Oh, Min Jong;Jin, Eun Ju;Han, Mi Seon;Park, Je Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.63-73
    • /
    • 2024
  • Autonomous vehicles at Levels 3 to 5, currently under global research and development, seek to replace the driver's perception, judgment, and control processes with various sensors integrated into the vehicle. This integration enables artificial intelligence to autonomously perform the majority of driving tasks. However, autonomous vehicles currently obtain temporary driving permits, allowing them to operate on roads if they meet minimum criteria for autonomous judgment abilities set by individual countries. When autonomous vehicles become more widespread in the future, it is anticipated that buyers may not have high confidence in the ability of these vehicles to avoid hazardous situations due to the limitations of temporary driving permits. In this study, we propose a method for grading the judgment abilities of autonomous vehicles based on a driving simulator experiment comparing and evaluating drivers' abilities to avoid hazardous situations. The goal is to derive evaluation criteria that allow for grading based on specific scenarios and to propose a framework for grading autonomous vehicles. Thirty adults (25 males and 5 females) participated in the driving simulator experiment. The analysis of the experimental results involved K-means cluster analysis and independent sample t-tests, confirming the possibility of classifying the judgment abilities of autonomous vehicles and the statistical significance of such classifications. Enhancing confidence in the risk-avoidance capabilities of autonomous vehicles in future hazardous situations could be a significant contribution of this research.

Assessment of the Non-point Source Pollution Control Strategies for Water Quality Improvement in the Haeban Stream of West Nakdong River Watershed (서낙동강 유역 해반천의 수질 개선을 위한 비점오염관리대책 효과 분석)

  • Yejin Kim
    • Journal of Wetlands Research
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • In this study, a HSPF model was developed to simulate runoff and water quality in the Haebancheon watershed, which has a high land area ratio and population density among the West Nakdong River watersheds. Various non-point source pollution control strategies were applied, and the reduction in pollutant loads and the exceedance rate of water quality standards were analyzed. The scenarios included basic road cleaning for reducing pollutant loads, runoff reduction measures considering extensive low-impact development techniques, and inflow reduction measures to mitigate non-point source pollution entering the river. In the first step, practical conditions such as the number of vehicles for road cleaning in Kimhae City were considered, while for the second and third steps, it was assumed that 50% of the applicable land use area was used to be applicable for the LID techniques. As a result of applying all three measures, it was analyzed that the BOD pollutant load could be reduced by 58.28%, T-N by 58.49%, and T-P by 51.56%. Furthermore, the 60th percentile of water quality measurements accumulated over 5 years was set as the target water quality, and a flow-duration curve was constructed. The exceedance rate of the flow-duration curve before and after applying non-point source pollution reduction measures was analyzed. As a result, for BOD, the exceedance rate decreased from 41.57% before applying the measures to 16.32% after, showing a 25.25% reduction in the exceedance rate. For T-N, the exceedance rate decreased significantly from 40.31% before the measures to 22.84% after, and for T-P, it decreased significantly from 62.43% to 27.22%.

Runoff and Erosion of Alachlor, Ethalfluralin, Ethoprophos and Pendimethalin by Rainfall Simulation (인공강우에 의한 alachlor, ethalfluralin, ethoprophos 및 pendimethalin의 토양표면 유출)

  • Kim, Chan-Sub;Ihm, Yang-Bin;Lee, Young-Deuk;Oh, Byung-Youl
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.4
    • /
    • pp.306-315
    • /
    • 2006
  • Two different experiments, adsorption/desorption and runoff by rainfall simulation of four pesticides, such as alachlor, ethalfluralin, ethoprophos and pendimethalin were undertaken their runoff and erosion losses from sloped land and to assess the influence of their properties and environmental factors on them. The mobility of four pesticides and which phase they were transported by were examined in adsorption study, and the influence of rainfall pattern and sloping degree on the pesticide losses were evaluated in simulated rainfall study. Freundlich adsorption parameters (K) by the adsorption and desorption methods were 1.2 and 2.2 for ethoprophos, 1.5 and 2.6 for alachlor, respectively. And adsorption distribution coefficients (Kd) by the adsorption and desorption methods were 56 and 94 for ethalfluralin, and 104 and 189 for pendimethalin, respectively. K or Kd values of pesticides by the desorption method which were desorbed from the soil after thoroughly mixing, were higher than these ones by the adsorption method which pesticides dissolved in water were adsorbed to the soil. Another parameter (1/n), representing the linearity of adsorption, in Freundlich equation for the pesticides tested ranged from 0.96 to 1.02 by the desorption method and from 0.87 to 1.02 by the adsorption method. Therefore, the desorption method was more independent from pesticide concentration in soil solution than the adsorption method. By Soil Survey and Land Research Center (SSLRC)'s classification for pesticide mobility, alachlor and ethoprophos were classified into moderately mobile $(75{\leq}Koc<500)$, and ethalfluralin and pendimethalin were included to non-mobile class (Koc > 4000). Runoff and erosion loss of pesticides by three rainfall scenarios were from 1.0 to 6.4% and from 0.3 to 1.2% for alachlor, from 1.0 to 2.5% and from 1.7 to 10.1% for ethalfluralin, from 1.3 to 2.9% and from 3.9 to 10.8% for pendimethalin, and from 0.6 to 2.7% and from 0.1 % 0.3% for ethoprophos, respectively. Distribution of pesticides in soil profile were investigated after the simulated rainfall study. Alachlor and ethoprophos were leached to from 10 to 15 cm of soil layer, but ethalfluralin and pendimethalin were mostly remained at the top 5 cm of soil profile. The losses of the pesticides at 30% of sloping degree were from 0.2 to 1.9 times higher than those at 10%. The difference of their runoff loss was related with their concentration in runoff water while the difference of their erosion loss must be closely related with the quantity of soil eroded.

Hydraulic Stability Examination of Rainwater Reservoir Pipe Network System on Various Inflow Conditions (유입량 변화에 따른 도심지 내 우수저류조 관망시스템의 안정성 검토)

  • Yoo, Hyung Ju;Kim, Dong Hyun;Maeng, Seung Jin;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.4
    • /
    • pp.1-13
    • /
    • 2019
  • Recently, as the occurrence frequency of sudden floods due to climate change increased, it is necessary to install the facilities that can cope with the initial stormwater. Most researches have been conducted on the design of facilities applying the Low Impact Development (LID) and the reduction effect on rainfall runoff to examine with 1D or 2D numerical models. However, the studies on the examination about flow characteristics and stability of pipe network systems were relatively insufficient in the literature. In this study, the stability of the pipe network system in rainwater storage tank was examined by using 3D numerical model, FLOW-3D. The changes of velocity and dynamic pressure were examined according to the number of rainwater storage tank and compared with the design criteria to derive the optimal design plan for a rainwater storage tank. As a results of numerical simulation with the design values in the previous study, it was confirmed that the velocity became increased as the number of rainwater storage tank increased. And magnitude of the velocity in pipes was formed within the design criteria. However, the velocity in the additional rainwater storage pipe was about 3.44 m/s exceeding the allowable range of the design criteria, when three or more additional rainwater storage tanks were installed. In the case of turbulence intensity and bottom shear stress, the bottom shear stress was larger than the critical shear stress as the additional rainwater storage was increased. So, the deposition of sediment was unlikely to occur, but it should be considered that the floc was formed by the reduction of the turbulence intensity. In addition, the dynamic pressure was also satisfied with the design criteria when the results were compared with the allowable internal pressure of the pipes generally used in the design of rainwater storage tank. Based on these results, it was suitable to install up to two additional rainwater storage tanks because the drainage becomes well when increasing of the number of storage tank and the velocity in the pipe becomes faster to be vulnerable to damage the pipe. However, this study has a assumption about the specifications of the rainwater storage tanks and the inflow of stormwater and has a limitation such that deriving the suitable rainwater storage tank design by simply adding the storage tank. Therefore, the various storage tank types and stormwater inflow scenarios will be asked to derive more efficient design plans in the future.

Implementation of integrated monitoring system for trace and path prediction of infectious disease (전염병의 경로 추적 및 예측을 위한 통합 정보 시스템 구현)

  • Kim, Eungyeong;Lee, Seok;Byun, Young Tae;Lee, Hyuk-Jae;Lee, Taikjin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.69-76
    • /
    • 2013
  • The incidence of globally infectious and pathogenic diseases such as H1N1 (swine flu) and Avian Influenza (AI) has recently increased. An infectious disease is a pathogen-caused disease, which can be passed from the infected person to the susceptible host. Pathogens of infectious diseases, which are bacillus, spirochaeta, rickettsia, virus, fungus, and parasite, etc., cause various symptoms such as respiratory disease, gastrointestinal disease, liver disease, and acute febrile illness. They can be spread through various means such as food, water, insect, breathing and contact with other persons. Recently, most countries around the world use a mathematical model to predict and prepare for the spread of infectious diseases. In a modern society, however, infectious diseases are spread in a fast and complicated manner because of rapid development of transportation (both ground and underground). Therefore, we do not have enough time to predict the fast spreading and complicated infectious diseases. Therefore, new system, which can prevent the spread of infectious diseases by predicting its pathway, needs to be developed. In this study, to solve this kind of problem, an integrated monitoring system, which can track and predict the pathway of infectious diseases for its realtime monitoring and control, is developed. This system is implemented based on the conventional mathematical model called by 'Susceptible-Infectious-Recovered (SIR) Model.' The proposed model has characteristics that both inter- and intra-city modes of transportation to express interpersonal contact (i.e., migration flow) are considered. They include the means of transportation such as bus, train, car and airplane. Also, modified real data according to the geographical characteristics of Korea are employed to reflect realistic circumstances of possible disease spreading in Korea. We can predict where and when vaccination needs to be performed by parameters control in this model. The simulation includes several assumptions and scenarios. Using the data of Statistics Korea, five major cities, which are assumed to have the most population migration have been chosen; Seoul, Incheon (Incheon International Airport), Gangneung, Pyeongchang and Wonju. It was assumed that the cities were connected in one network, and infectious disease was spread through denoted transportation methods only. In terms of traffic volume, daily traffic volume was obtained from Korean Statistical Information Service (KOSIS). In addition, the population of each city was acquired from Statistics Korea. Moreover, data on H1N1 (swine flu) were provided by Korea Centers for Disease Control and Prevention, and air transport statistics were obtained from Aeronautical Information Portal System. As mentioned above, daily traffic volume, population statistics, H1N1 (swine flu) and air transport statistics data have been adjusted in consideration of the current conditions in Korea and several realistic assumptions and scenarios. Three scenarios (occurrence of H1N1 in Incheon International Airport, not-vaccinated in all cities and vaccinated in Seoul and Pyeongchang respectively) were simulated, and the number of days taken for the number of the infected to reach its peak and proportion of Infectious (I) were compared. According to the simulation, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days when vaccination was not considered. In terms of the proportion of I, Seoul was the highest while Pyeongchang was the lowest. When they were vaccinated in Seoul, the number of days taken for the number of the infected to reach at its peak was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. When they were vaccinated in Pyeongchang, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. Based on the results above, it has been confirmed that H1N1, upon the first occurrence, is proportionally spread by the traffic volume in each city. Because the infection pathway is different by the traffic volume in each city, therefore, it is possible to come up with a preventive measurement against infectious disease by tracking and predicting its pathway through the analysis of traffic volume.

APPLICATION OF FUZZY SET THEORY IN SAFEGUARDS

  • Fattah, A.;Nishiwaki, Y.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1051-1054
    • /
    • 1993
  • The International Atomic Energy Agency's Statute in Article III.A.5 allows it“to establish and administer safeguards designed to ensure that special fissionable and other materials, services, equipment, facilities and information made available by the Agency or at its request or under its supervision or control are not used in such a way as to further any military purpose; and to apply safeguards, at the request of the parties, to any bilateral or multilateral arrangement, or at the request of a State, to any of that State's activities in the field of atomic energy”. Safeguards are essentially a technical means of verifying the fulfilment of political obligations undertaken by States and given a legal force in international agreements relating to the peaceful uses of nuclear energy. The main political objectives are: to assure the international community that States are complying with their non-proliferation and other peaceful undertakings; and to deter (a) the diversion of afeguarded nuclear materials to the production of nuclear explosives or for military purposes and (b) the misuse of safeguarded facilities with the aim of producing unsafeguarded nuclear material. It is clear that no international safeguards system can physically prevent diversion. The IAEA safeguards system is basically a verification measure designed to provide assurance in those cases in which diversion has not occurred. Verification is accomplished by two basic means: material accountancy and containment and surveillance measures. Nuclear material accountancy is the fundamental IAEA safeguards mechanism, while containment and surveillance serve as important complementary measures. Material accountancy refers to a collection of measurements and other determinations which enable the State and the Agency to maintain a current picture of the location and movement of nuclear material into and out of material balance areas, i. e. areas where all material entering or leaving is measurab e. A containment measure is one that is designed by taking advantage of structural characteristics, such as containers, tanks or pipes, etc. To establish the physical integrity of an area or item by preventing the undetected movement of nuclear material or equipment. Such measures involve the application of tamper-indicating or surveillance devices. Surveillance refers to both human and instrumental observation aimed at indicating the movement of nuclear material. The verification process consists of three over-lapping elements: (a) Provision by the State of information such as - design information describing nuclear installations; - accounting reports listing nuclear material inventories, receipts and shipments; - documents amplifying and clarifying reports, as applicable; - notification of international transfers of nuclear material. (b) Collection by the IAEA of information through inspection activities such as - verification of design information - examination of records and repo ts - measurement of nuclear material - examination of containment and surveillance measures - follow-up activities in case of unusual findings. (c) Evaluation of the information provided by the State and of that collected by inspectors to determine the completeness, accuracy and validity of the information provided by the State and to resolve any anomalies and discrepancies. To design an effective verification system, one must identify possible ways and means by which nuclear material could be diverted from peaceful uses, including means to conceal such diversions. These theoretical ways and means, which have become known as diversion strategies, are used as one of the basic inputs for the development of safeguards procedures, equipment and instrumentation. For analysis of implementation strategy purposes, it is assumed that non-compliance cannot be excluded a priori and that consequently there is a low but non-zero probability that a diversion could be attempted in all safeguards ituations. An important element of diversion strategies is the identification of various possible diversion paths; the amount, type and location of nuclear material involved, the physical route and conversion of the material that may take place, rate of removal and concealment methods, as appropriate. With regard to the physical route and conversion of nuclear material the following main categories may be considered: - unreported removal of nuclear material from an installation or during transit - unreported introduction of nuclear material into an installation - unreported transfer of nuclear material from one material balance area to another - unreported production of nuclear material, e. g. enrichment of uranium or production of plutonium - undeclared uses of the material within the installation. With respect to the amount of nuclear material that might be diverted in a given time (the diversion rate), the continuum between the following two limiting cases is cons dered: - one significant quantity or more in a short time, often known as abrupt diversion; and - one significant quantity or more per year, for example, by accumulation of smaller amounts each time to add up to a significant quantity over a period of one year, often called protracted diversion. Concealment methods may include: - restriction of access of inspectors - falsification of records, reports and other material balance areas - replacement of nuclear material, e. g. use of dummy objects - falsification of measurements or of their evaluation - interference with IAEA installed equipment.As a result of diversion and its concealment or other actions, anomalies will occur. All reasonable diversion routes, scenarios/strategies and concealment methods have to be taken into account in designing safeguards implementation strategies so as to provide sufficient opportunities for the IAEA to observe such anomalies. The safeguards approach for each facility will make a different use of these procedures, equipment and instrumentation according to the various diversion strategies which could be applicable to that facility and according to the detection and inspection goals which are applied. Postulated pathways sets of scenarios comprise those elements of diversion strategies which might be carried out at a facility or across a State's fuel cycle with declared or undeclared activities. All such factors, however, contain a degree of fuzziness that need a human judgment to make the ultimate conclusion that all material is being used for peaceful purposes. Safeguards has been traditionally based on verification of declared material and facilities using material accountancy as a fundamental measure. The strength of material accountancy is based on the fact that it allows to detect any diversion independent of the diversion route taken. Material accountancy detects a diversion after it actually happened and thus is powerless to physically prevent it and can only deter by the risk of early detection any contemplation by State authorities to carry out a diversion. Recently the IAEA has been faced with new challenges. To deal with these, various measures are being reconsidered to strengthen the safeguards system such as enhanced assessment of the completeness of the State's initial declaration of nuclear material and installations under its jurisdiction enhanced monitoring and analysis of open information and analysis of open information that may indicate inconsistencies with the State's safeguards obligations. Precise information vital for such enhanced assessments and analyses is normally not available or, if available, difficult and expensive collection of information would be necessary. Above all, realistic appraisal of truth needs sound human judgment.

  • PDF

The Development of a Ship Firefighting Drill Simulator (선박소화훈련 시뮬레이터 개발에 관한 연구)

  • Kim, Won-Ouk;Kim, Dae-Hee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.410-416
    • /
    • 2016
  • After the Sewol Ferry accident, the importance of maritime safety has been emphasized in Korea. In particular, educational and experience training are not only being conducted for maritime personnel but also in schools and at maritime-related organizations in order to broadly instill maritime safety awareness. Based on SOLAS regulations, safety education for sailors conducted every 10 days passenger boats, and fire-fighting drills and abandon-ship training should be conducted once a month on merchant ships. After the Sewol Ferry accident, the maximum number of trainees was reduced from 40 to 20 in order to improve the effectiveness of these training sessions by requiring all trainees to participate in the actual training. The current training process consists of two steps: textbook-based theoretical training and actual practice. Current training environment provides limited capability from human and facility recourses which limit the numbers of trainee participated and system operation time. By introducing the simulation training, it will improve the trainee skill and performance prior to the on-site training and allow the more effective and rapid progress on actual practice. Therefore, it will be proposed the three-step training method in order to improve the effectiveness on fire-fighting drill in Maritime Safety Education on this study. This study suggests a three step training method that would increase the efficiency of maritime safety education. An image-training step to enhance individual task awareness and equipment usage via simulation techniques after theoretical training has been added. To implement this simulation, a virtual training session will be conducted before actual training, based on knowledge obtained from theoretical training, which is expected to increase the speed with which trainees can adapt during the practical training session. In addition, due to the characteristics of the simulation, repeated training is possible for reaction drills in emergency circumstances and other various scenarios that are difficult to replicate in actual training. The efficiency of training is expected to improve because trainees will have practiced before practical training takes place, which will decrease the time needed for practical training and increase the number of training sessions that can be executed, increasing the efficiency of training overall. This study considers development methods for fire-fighting drill simulations using virtual reality techniques.