• Title/Summary/Keyword: developed environmental resources

Search Result 1,177, Processing Time 0.024 seconds

Rational Sectional Force and Design Improvement of Abutment Wing-Wall (교대 날개벽의 합리적인 단면력 산정 및 설계 개선)

  • Chung, Wonseok;Kim, Minho;An, Zu-Og;Choi, Hyukjin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.145-152
    • /
    • 2011
  • Current Bridge Specification for Highway Bridges adopts a simplified method to determine sectional forces of abutment wing by dividing its area into four sections. This simplified method was developed in Japan when numerical analysis was not mature and computer resources were expensive. This simplified method has been with us without modification. This study evaluates the problem of current design practice to improve the design guideline for abutment wing. In this study, a finite element model of abutment wing based on shell elements was developed to obtain accurate sectional force. In addition, foreign design specifications regarding abutment wing were thoroughly examined. It has been observed that sectional forces obtained from the simplified method produce inaccurate results under various geometric shapes. Thus, it is recommended that two dimensional plate analyses should be adopted for future design of abutment wing wall.

Callus induction and plant regeneration of Iris dichotoma Pall. in endangered species

  • Bae, Kee-Hwa;Yoo, Kyoung-Hwa;Lee, Hak-Bong;Yoon, Eui-Soo
    • Journal of Plant Biotechnology
    • /
    • v.39 no.3
    • /
    • pp.182-188
    • /
    • 2012
  • Iris dichotoma Pall. is an important endangered plant belonging to the family Iridaceae. A method was developed for the rapid micropropagation of I. dichotoma through plant regeneration from leaf, rhizome, and root explant-derived calli. Leaf, rhizome, and root segments were cultured on Murashige and Skoog (MS) medium supplemented with 2,4-dichlorophenoxy acetic acid (2,4-D; $0-3.0mg{\cdot}L^{-1}$) for callus induction. Callus production was highest at $1.0mg{\cdot}L^{-1}$ 2,4-D, where 73.8% and 45.5% of cultured rhizome and root cuttings, respectively, produced calli. The viable calli were maintained at an induced concentration of 2,4-D ($3.0mg{\cdot}L^{-1}$). They were then transferred to MS medium supplemented with various concentrations of 2,4-D ($0-3.0mg{\cdot}L^{-1}$) in combination with 6-benzyladenine (BA: 0, 1.0 and $3.0mg{\cdot}L^{-1}$) for adventitious shoot regeneration. The addition of a low concentration of 2,4-D into BA-containing medium significantly increased the frequency of shoot regeneration in leaf, rhizome, and root-derived calli. The highest number of adventitious shoots (26.4 per callus) formed at $0.5mg{\cdot}L^{-1}$ 2,4-D and 1.0 mg/l BA. For rooting of the shoots, half- strength MS medium supplemented with different concentrations of indole 3-butyric acid (IBA) $0-3.0mg{\cdot}L^{-1}$ was tested. The optimal results were observed using half-strength MS medium supplemented with $1.0mg{\cdot}L^{-1}$ IBA, on which 98% of the regenerated shoots developed roots with an average of 3.5 roots per shoot within 45 days. The plantlets raised in vitro were acclimatized and transferred to soil with 95% success. This in vitro propagation protocol will be useful for conservation and mass propagation of this endangered plant.

Evaluating the bond strength of FRP in concrete samples using machine learning methods

  • Gao, Juncheng;Koopialipoor, Mohammadreza;Armaghani, Danial Jahed;Ghabussi, Aria;Baharom, Shahrizan;Morasaei, Armin;Shariati, Ali;Khorami, Majid;Zhou, Jian
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.403-418
    • /
    • 2020
  • In recent years, the use of Fiber Reinforced Polymers (FRPs) as one of the most common ways to increase the strength of concrete samples, has been introduced. Evaluation of the final strength of these specimens is performed with different experimental methods. In this research, due to the variety of models, the low accuracy and impact of different parameters, the use of new intelligence methods is considered. Therefore, using artificial intelligent-based models, a new solution for evaluating the bond strength of FRP is presented in this paper. 150 experimental samples were collected from previous studies, and then two new hybrid models of Imperialist Competitive Algorithm (ICA)-Artificial Neural Network (ANN) and Artificial Bee Colony (ABC)-ANN were developed. These models were evaluated using different performance indices and then, a comparison was made between the developed models. The results showed that the ICA-ANN model's ability to predict the bond strength of FRP is higher than the ABC-ANN model. Finally, to demonstrate the capabilities of this new model, a comparison was made between the five experimental models and the results were presented for all data. This comparison showed that the new model could offer better performance. It is concluded that the proposed hybrid models can be utilized in the field of this study as a suitable substitute for empirical models.

Prediction of Soluble Solids Content of Chestnut using VIS/NIR Spectroscopy

  • Park, Soo Hyun;Lim, Ki Taek;Lee, Hoyoung;Lee, Soo Hee;Noh, Sang Ha
    • Journal of Biosystems Engineering
    • /
    • v.38 no.3
    • /
    • pp.185-191
    • /
    • 2013
  • Purpose: The present study focused on the estimation of soluble solids content (SSC) of chestnut using reflectance and transmittance spectra in range of VIS/NIR. Methods: Four species intact/peeled chestnuts were used for acquisition of spectral data. Transmittance and reflectance spectra were used to develop the best PLS model to estimate SSC of chestnut. Results: The model developed with the transmitted energy spectra of peeled chestnuts rather than intact chestnuts and with range of NIR rather than VIS performed better. The best $R^2$ and RMSEP of cross validation were represented as 0.54 and $1.85^{\circ}Brix$. The results presented that the reflectance spectra of peeled chestnuts by species showed the best performance to predict SSC of chestnut. $R^2$ and RMSEP were 0.55 and $1.67^{\circ}Brix$. Conclusions: All developed models showed RMSEP around $1.44{\sim}2.54^{\circ}Brix$, which is considered not enough to estimate SSC accurately. It was noted that $R^2$ of cross validation that we found were not high. For all that, grading of the fruits in two or three classes of SSC during postharvest handling seems possible with an inexpensive spectrophotometer. Furthermore, the development of estimation of SSC by each chestnut species could be considered in that SSC distribution is clustering in different range by species.

Review on Proton Exchange Membranes for Microbial Fuel Cell Application (미생물 연료 전지 적용을 위한 양성자 교환막에 대한 검토)

  • Kim, Ji Min;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.213-227
    • /
    • 2020
  • As unrenewable energy resources have depleted over the years, the demand for renewable energy has increased promoting research for more effective methods to produce renewable energy. The field of fuel cell development, specifically microbial fuel cells (MFCs), has developed because of the dual performance potential of the technology. MFCs convert power by facilitating electrode-reducing organisms such as bacteria (microbes) as a catalyst to produce electrical energy. MFCs use domestic and industrial wastewater as fuel to initiate the process, purifying the wastewater as a result. Proton exchange membranes (PEM) play a crucial role in MFCs as a separator between the anodes and cathodes chambers allowing only protons to effectively pass through. Nafion is the commercially used PEM for MFCs, but there are many setbacks: such as cost, production time, and less effective proton conductivity properties. In this review there will be largely two parts. Firstly, several newly developed PEM are discussed as possible replacements of Nafion. Secondly, MFC based on PEM, blended PEM and composite PEM are summarized.

Development and Application of a Physics-based Soil Erosion Model (물리적 표토침식모형의 개발과 적용)

  • Yu, Wansik;Park, Junku;Yang, JaeE;Lim, Kyoung Jae;Kim, Sung Chul;Park, Youn Shik;Hwang, Sangil;Lee, Giha
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.66-73
    • /
    • 2017
  • Empirical erosion models like Universal Soil Loss Equation (USLE) models have been widely used to make spatially distributed soil erosion vulnerability maps. Even if the models detect vulnerable sites relatively well utilizing big data related to climate, geography, geology, land use, etc within study domains, they do not adequately describe the physical process of soil erosion on the ground surface caused by rainfall or overland flow. In other words, such models are still powerful tools to distinguish the erosion-prone areas at large scale, but physics-based models are necessary to better analyze soil erosion and deposition as well as the eroded particle transport. In this study a physics-based soil erosion modeling system was developed to produce both runoff and sediment yield time series at watershed scale and reflect them in the erosion and deposition maps. The developed modeling system consists of 3 sub-systems: rainfall pre-processor, geography pre-processor, and main modeling processor. For modeling system validation, we applied the system for various erosion cases, in particular, rainfall-runoff-sediment yield simulation and estimation of probable maximum sediment (PMS) correlated with probable maximum rainfall (PMP). The system provided acceptable performances of both applications.

Trend and direction for plant factory system (식물공장 시스템의 동향과 발전방향)

  • Kim, Jae-Whune
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.442-455
    • /
    • 2010
  • Plant factory is the fruit of the most advanced modern agricultural technology. This is a crop-producing technology that controls systematically sowing, cultivating, and harvesting crops within an indoor factory. Growing crops in a factory has advantages over traditional farming because it produces safer crops all year around due to clean environment and it is easier to hire workers at the factory. Developed countries has invested actively in this field for several decades because its economical and industrial impact are predicted to be enormous. Recently, Korea also begins to investigate this field actively to develop a system that may be competitive at global market, using technologies and human resources that Korea already has. The plant factory technology is currently less competitive than traditional farming because it requires a large initial investment and management cost and lacks cultivation technologies for various crops. However, I believe in solving these problems if plant biotechnologists participate in developing the plant factory system. If this technology is developed well in Korea, then it will play a great role in solving food and environmental issues.

Study on Development of Non-Destructive Measurement Technique for Viability of Lettuce Seed (Lactuca sativa L) Using Hyperspectral Reflectance Imaging (초분광 반사광 영상을 이용한 상추(Lactuca sativa L) 종자의 활력 비파괴측정기술 개발에 관한 연구)

  • Ahn, Chi-Kook;Cho, Byoung-Kwan;Mo, Chang Yeun;Kim, Moon S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.518-525
    • /
    • 2012
  • In this study, the feasibility of hyperspectral reflectance imaging technique was investigated for the discrimination of viable and non-viable lettuce seeds. The spectral data of hyperspectral reflectance images with the spectral range between 750 nm and 1000 nm were used to develop PLS-DA model for the classification of viable and non-viable lettuce seeds. The discrimination accuracy of the calibration set was 81.6% and that of the test set was 81.2%. The image analysis method was developed to construct the discriminant images of non-viable seeds with the developed PLS-DA model. The discrimination accuracy obtained from the resultant image were 91%, which showed the feasibility of hyperspectral reflectance imaging technique for the mass discrimination of non-viable lettuce seeds from viable ones.

An Analysis of Urban Open Space with Geographic Information Systems - A Case Study of Ansan City, Korea - (지리정보체계를 이용한 안산시의 오픈스페이스 분석)

  • 서동조;박종화
    • Korean Journal of Remote Sensing
    • /
    • v.6 no.2
    • /
    • pp.89-113
    • /
    • 1990
  • The purpose of this study is to develop means to apply GIS and remote sensing technology to the analysis of Korean urban open spaces. To achieve this objective, a framework of analysis of urban open spaces was developed, and then the framework was applied for the evaluation of the potential and suitability of open spaces of Ansan City, which is a new town developed to accomodate industries relocation from Seoul, Korea, mainly due to their pollution problems. The software used in this study are IDRISI, a grid-based GIS, and KMIPS, a remote sensing analysis system. Both packages are based on IBM PC/AT computers with Microsoft DOS. Landsat MSS and TM data were used for the land use classification, land use change detection, and analysis of transformed vegetation indices. The size of the geographic data base is 110 rows and 150 columns with the spatial resolution of 100m$\times$100m. The framework of analysis includes both quanititative and qualitative analysis of open spaces. The quantitative analysis includes size and distribution of open spaces, urban develpment of open spaces, and the degree of vegree of vegetation removal of the study area. The qualitative analysis includes evaluative criteria for primary productivity of land, park use potential, major visual resources, and urban environmental control. The findings of this study can be summarized as follows. First, the size of builtup areas increased 18.73km$^2$, while the size of forest land decreased 10.86km$^2$ during last ten years. Agricultural lands maintained its size, but shifted toward outside of the city into forest. Second, the potential of open spaces for park use is limited mainly due to their lack of accessibility and connectivity among open spaces, in spite of ample acreage and good site conditions. Third, major landscape elements and historic sites should be connected to the open space system of the city by new accesses and buffers.

Evaluation of Limestone for In-Situ Desulfurization in CFB Boilers (순환유동층 보일러 로내 탈황을 위한 석회석 평가)

  • Lee, See Hoon;Kim, Dong Won;Lee, Jong Min;Bae, Yong Chae
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.853-860
    • /
    • 2019
  • In order to meet more severe environmental regulations, oxy-fuel circulating fluidized bed(CFB) boilers or ultra supercritical CFB boilers, which are a kind of process in that solid particles moves similar to fluid, have been developed in the world. In CFB power generation processes, the method to reduce or remove sulfur dioxide is in-situ desulfurization reaction via limestone directly injected into CFB boilers. However, the desulfurization efficiencies have continuously changed because limestones injected into CFB boilers are affected by various operation conditions (Bed temperature, pressure, solid circulating rate, solid holdup, residence time, and so on). In this study, a prediction method with physical and chemical properties of limestone and operation conditions of CFB boiler for in-situ desulfurization reaction in CFB boilers has developed by integrating desulfurization kinetic equations and hydrodynamics equations for CFB previously published. In particular, the prediction equation for in-situ desulfurization was modified by using experimental results from desulfurization reactions of various domestic limestones.