• Title/Summary/Keyword: detrital zircon

Search Result 26, Processing Time 0.023 seconds

Detrital Zircon U-Pb Ages of the Cretaceous Muju Basin: Implications for the Depositional Age and Provenance (백악기 무주분지의 쇄설성 저어콘 U-Pb 연대를 이용한 퇴적시기와 퇴적물 기원지 연구)

  • Yong-Un Chae;Youhee Kim;Sujin Ha;Hyoun Soo Lim
    • Journal of the Korean earth science society
    • /
    • v.45 no.1
    • /
    • pp.85-109
    • /
    • 2024
  • Detrital zircon U-Pb dating was performed to determine the depositional age and provenance of sediments in the Cretaceous Muju Basin in Muju-gun, Jeollabuk-do. Six samples were collected from the Seolcheon Tuff (SCT), Bangyiri Formation (BYR), Gobang Member of the Gilwangri Formation (GWR-G), Seochang Member of the Gilwangri Formation (GWR-S), Bukchang Member of the Gilwangri Formation (GWR-B), and Jeogsangsan Formation (JSS). Based on the dating results, the sedimentary strata of the Muju Basin were deposited for approximately 105.6-90.4 Ma corresponding to the Albian to Turonian. The youngest single zircon ages of about 94.4 Ma and 89.6 Ma were confirmed in the samples from the Bangyiri Formation and the Gobang Member of the Gilwangri Formation, respectively, distributed in the western part of the Muju Basin. The relative and numerical ages previously estimated based on the lithostratigraphic correlation of the Gilwangri conglomerate need to be revisited in further research. The results also suggest that most of the sediments filling the Muju Basin were supplied from a limited area adjacent to the basin.

Comparison of U-Pb Age Distribution Characteristics of Detrital Zircons in the Age-unknown Geumsusan Formation and Jangsan Formation of the Joseon Supergroup (조선누층군 장산층과 시대미상 금수산층의 쇄설성 저어콘 U-Pb 연령분포 특성 비교)

  • Cho, Kyungo;Park, Kye-Hun;Song, Yong-Sun;Choi, Ji Eun
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.49-64
    • /
    • 2019
  • SHRIMP U-Pb ages were analyzed for the detrital zircons separated from the Jangsan Formation of the Lower Paleozoic Joseon Supergroup in the Taebaeksan Basin and the Mungyeong area. Similar to the previously reported from Taebaeksan basin, the detrital zircons show strong peaks near the age of about 1.8-2.0 Ga and about 2.5 Ga. This indicates that the detrital zircons of the Jangsan Formation originated from the basement rocks of the Korean Peninsula. Although the age of the basement rocks on the Korean Peninsula is mainly concentrated in the 1.8-2.0 Ga, the age of about 2.5 Ga is clearly visible in the Jangsan Formation, suggesting that the age distribution of the basement rocks exposed to the surface at that time may be somewhat different from now. The detrital zircons of age-unknown Geumsusan Formation distributed between Danyang and Jecheon also show the U-Pb age distribution with a strong peaks around 1.8-2.0 Ga and 2.5 Ga, which is very similar to that of the Jangsan Formation, suggesting a possibility that the two formations are likely to be correlated.

SHRIMP U-Pb Zircon Geochronology of the Guryong Group in Odesan Area, East Gyeonggi Massif, Korea: A new identification of Late Paleozoic Strata and Its Tectonic Implication (경기육괴 동부 오대산 지역의 구룡층군에 대한 SHRIMP U-Pb 저어콘 연대측정: 새로운 후기 고생대층의 인지와 지체구조적 의의)

  • Cho, Deung-Lyong
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.197-208
    • /
    • 2014
  • Zircon separated from a biotite schist of the Guryong Group in Odesan area, eastern part of the Gyeonggi Massif in Korea were analysed for SHRIMP U-Pb ages. CL images display composite core-rim structures of the zircon, indicating an in-situ overgrowth of zircon through a high-grade metamorphism. The metamorphic zircon rims give a weighted mean age of $247{\pm}6Ma$. While the detrital zircon cores have zoning patterns and Th/U ratios indicative of a magmatic origin. Among 53 analyses from the cores, 46 data yield near concordant ages which are concentrated at $378{\pm}10Ma$ (n=9), $420{\pm}4Ma$ (n=6) and $1845{\pm}9Ma$ (n=18) with sporadic Neoproterozoic ($687{\pm}9Ma$) to late Archean ($2519{\pm}20Ma$) ages. The age data constraint sedimentation age of protolith of the Guryong Group, so far unknown, as late Paleozoic. The Guryong Group of this study is the first late Paleozoic strata reported from eastern Gyeonggi Massif, and its maximum depositional age (ca 378 Ma) is identical with those of the late Paleozoic strata in the southwestern Ogcheon Belt. The Triassic metamorphic age and abundant middle Paleozoic provenance (361~425 Ma) of the Guryong Group are similar with those reported from the Triassic collisional belt in central China. Thus this study indicates that the Odesan area would be an possible eastward extension of the Triassic collisional belt in central China.

Detrital zircon U-Pb ages of the uppermost Jinju Formation in the Natural Monument No. 534 'Tracksite of Pterosaurs, Birds, and Dinosaurs in Hotandong, Jinju', Korea

  • Chae, Yong-Un;Lim, Jong Deock;Kim, Cheong-Bin;Kim, Kyung Soo;Ha, Sujin;Lim, Hyoun Soo
    • Journal of the Korean earth science society
    • /
    • v.41 no.4
    • /
    • pp.367-380
    • /
    • 2020
  • LA-MC-ICP-MS zircon U-Pb dating was conducted to constrain the timing of fossil formation and the depositional age of the uppermost Jinju Formation located in Natural Monument No. 534 (Tracksite of Pterosaurs, Birds, and Dinosaurs in Hotandong, Jinju), and 87 Cretaceous, 1 Precambrian, and 2 Jurassic zircons were obtained from 90 valid analytical points. Most Cretaceous zircons were found to have a youngest graphical peak age of ca. 106.5 Ma, suggesting the depositional age of the uppermost Jinju Formation. Based on this study and previous works, the average sedimentation rate of the Jinju Formation was calculated to be approximately 0.17-0.31 mm/year in the Milyang Subbasin, and the Cretaceous zircons of the uppermost Jinju Formation seem to have originated mainly from the western or northwestern parts of the Gyeonggi Massif. Unlike the Nakdong and Hasandong formations of the Sindong Group, most zircons analyzed in the uppermost Jinju Formation were Cretaceous. This suggests that volcanic activity occurred in the area closer to the Gyeongsang Basin due to the roll-back of subducting paleo-Pacific Plates during the Jinju period.

SHRIMP Zircon U-Pb Ages of Basement Rocks in the Danyang National Geopark (단양 국가지질공원 기반암류의 SHRIMP 저어콘 U-Pb 연령)

  • Cheong, Wonseok;Han, Giun;Kim, Taehwan;Aum, Hyun Woo;Kim, Yoonsup
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.339-347
    • /
    • 2020
  • We carried out the U-Pb age dating of zircon from basement rocks in the southern part of the Danyang National Geopark. Two migmatitic gneisses composed of biotite±sillimanite±garnet+feldspar+quartz were dated. Leucosomes in the samples were clearly distinguished from their melanosomes. The U-Pb isotopic compositions of zircon from sillimanite- and garnet-bearing migmatitic samples were measured using a secondary ion microprobe, yielding metamorphic ages, 1870±10 Ma (2σ)와 1863±6 Ma (2σ), respectively. 1.87~1.86 Ga metamorphic ages are consistent with those of the Paleoproterozoic low-P and high-T regional metamorphism (1.87~1.85 Ga) in the Yeongnam Massif. The maximum depositional age based upon the apparent 207Pb/206Pb ages of detrital zircon in the samples was estimated as 2.06 Ga, and thus sedimentation age of the protolith of the migmatitic gneisses ranges between 2.06 and 1.87 Ga.

LA-MC-ICPMS U-Pb Ages of the Detrital Zircons from the Baengnyeong Group: Implications of the Dominance of the Mesoproterozoic Zircons (신원생대 백령층군 사암의 쇄설성 저어콘 LA-MC-ICPMS U-Pb 연령: 중원생대 집중연령의 의미)

  • Kim, Myoung Jung;Park, Jeong-Woong;Lee, Tae-Ho;Song, Yong-Sun;Park, Kye-Hun
    • Economic and Environmental Geology
    • /
    • v.49 no.6
    • /
    • pp.433-444
    • /
    • 2016
  • The U-Pb ages of detrital zircons from the Baengnyeong Group were determined by LA-MC-ICPMS, yielding condensed age population in the range from 1100 Ma to 1800 Ma corresponding to the Mesoproterozoic to late Paleoproterozoic. However, detrital zircons of ca.1800-2000 Ma or ca. 2500 Ma ages, which appear frequently in the lower Paleozoic Joseon Supergroup and the upper Paleozoic Pyeongan Supergroup are lacking in the Baengnyeong Group. Such characteristics are identical to those of the Neoproterozoic Sangwon System of North Korea, suggesting that the Baengnyeong Group might be the southwestern extension of the Sangwon System. The zircon age distribution patterns from the Impi Formation in the Gunsan area closely resemble those of the Baengnyeong Group, implying possible correlation of the Impi Formation to the Sangwon System. Therefore, the Mesoproterozoic detrital zircons reported from the Hwangangni Formation of the Okcheon Metamorphic Belt and the Myobong, Sambangsan and Sesong Formations of the Taebaeksan Basin might be derived from the provenances within the Korean peninsula.

SHRIMP U-Pb Zircon Ages of the Jinju Formation and Silla Conglomerate, Gyeongsang Basin (경상분지 진주층 및 신라역암의 SHRIMP U-Pb 저어콘 연령분포 및 그 의미)

  • Lee, Tae-Ho;Park, Kye-Hun;Chun, Jong-Hwa;Yi, Kee-Wook
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.89-101
    • /
    • 2010
  • To constrain the depositional ages of the Gyeongsang sedimeantary formations, SHRIMP U-Pb ages were determined from detrital zircons in three samples: (1) a pebble-bearing sandstone from the lowermost Jinju Formation of the Sindong Group and (2) two conglomerates from the Silla Conglomerate of the Hayang Group. Their concordia ages are $112.4{\pm}1.3(2{\sigma})$ Ma and $110.4{\pm}2.0(2{\sigma})$ Ma respectively. Such ages represent the maximum deposition ages for the lowermost Jinju Formation and Silla Conglomerate, indicating the deposition of the Jinju Formation started from late Aptian and lasted to early Albian, then deposition of the rather thin Chilgok Formation and Silla Conglomerate was followed during the Albian. The age distribution of the analyzed detrital zircons indicates the presence of protoliths, or zircons derived from them, regarding a wide span of igneous activities from Mesozoic to Archean. Among such ages, there are Mesoproterozoic, Neoproterozoic and Paleozoic igneous activities, which have not been known or seldom reported from Korean peninsula. These ages further suggest the possible presence of rocks with such ages during the deposition periods or their derivation through a long river system developed into the continents at the time of deposition.

Reassessment of the Pyeongan Supergroup: Metamorphism and Deformation of the Songrim Orogeny (평안누층군의 재조명: 송림 조산운동의 변성작용과 변형작용)

  • Kim, Hyeong Soo
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.367-379
    • /
    • 2019
  • Pyeongan Supergroup (PS) in the Taebaeksan basin preserves key geological evidences to understand the tectonometamorphic evolution of the Songrim orogeny that affected the formation of the Korean Peninsula during the late Paleozoic to early Mesozoic. The aims of this paper therefore are to investigate the characteristics of the Songrim orogeny based on the previous results of metamorphism and deformations of the PS, and then to review geological significance and research necessity of the PS. Age distributions and Th/U ratio of detrital zircon in the PS indicate that sedimentary environment of the Taebaeksan basin during the late Paleozoic was arc-related foreland basin and retro-arc foreland basin at the active continental margin. In addition, the main magmatic activities occurred in the early Pennsylvanian and Middle Permian, thus sedimentation and magmatic activities occurred simultaneously. The PS was affected by lower temperature-medium pressure (M1) and medium temperature and pressure (M2) regional metamorphism during the Songrim orogeny. During M1, slate and phyllite containing chloritoid, andalusite, kyanite porphyroblasts intensively deformed by E-W bulk crustal shortening combined with folding and shearing. And garnet and staurolite porphyroblasts were formed during the N-S bulk crustal shortening accompained by M2. Such regional metamorphism of the PS is interpreted to occur in an area where high strain zone is localized during ca. 220-270 Ma. In order to elucidate the evolution of the Taebaeksan basin and tectonic features of the Songrim orogeny, it is expected that the study will be carried out such as the regional distribution of metamorphic zones developed in the PS, characteristics and timing of deformations, and late Paleozoic paleo-geography of the Taebaeksan basin.

Basin Evolution of the Taebaeksan Basin during the Early Paleozoic (전기 고생대 태백산분지의 분지 진화)

  • Kwon, Yi Kyun;Kwon, Yoo Jin;Yeo, Jung Min;Lee, Chang Yoon
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.427-448
    • /
    • 2019
  • This study reconstructed the paleoenvironments and paleogeography of the Taebaeksan Basin, through a review of the previous researches on sedimentology, paleontology and stratigraphy. This study also carried out a sequence stratigraphic analysis on regional tectonism and sea-level fluctuations on the basin during the Early Paleozoic. The basin broadly occur in the Taebaek, Yeongweol-Jecheon, Jeongseon-Pyeongchang, and Mungyeong areas, Gangwon province, South Korea. The basin-fills are composed mainly of mixed carbonates and siliciclastics, divided into the Taebaek, Yeongweol, Yongtan, Pyeongchang and Mungyeong groups according to lithologies and stratigraphic characteristics. Recently, there are a lot of studies on the provenance and depositional ages of the siliciclastic sequences of the basin. The detrital sediments of the basin would be derived from two separated provenances of the core-Gondwana and Sino-Korean cratons. In the Early Cambrian, the Taebaek and Jeongseon-Pyeongchang platforms have most likely received detrital sediments from the provenance of the Sino-Korean craton. On the other hand, the detrital sediments of the Yeongweol-Jecheon platform was probably sourced by those of the core-Gondwana craton. This separation of provenance can be interpreted as the result of the paleogeographic and paleotopographic separation of the Yeongweol-Jecheon platform from the Taebaek and Jeongseon-Pyeongchang platforms. The analyses on detrital zircons additionally reveal that the separation of provenance was ceased by the eustatic rise of sea-level during the Middle Cambrian, and the detrital sediments of the Taebaeksan Basin were entirely supplied from those of the core-Gondwana craton. During that period, sediment supply from the Sino-Korean craton would be restricted due to inundation of the provenance area of the craton. On the other hand, the Jeongseon-Pyeongchang platform sequences show the unconformable relationship between the Early Cambrian siliciclastic and the Early Ordovician carbonate strata. It is indicative of presence of regional uplift movements around the platform which would be to the extent offset of the effects of the Middle to Late Cambrian eustatic sealevel rise. These movements expanded and were reinforced across the basin in the latest Cambrian and earliest Ordovician. After the earliest Ordovician, the basin was tectonically stabilized, and the shallow marine carbonate environments were developed on the whole-platform by the Early Ordovician global eustatic sea-level rise, forming very thick carbonate strata in the basin. In the Late Ordovician, the Early Paleozoic sedimentation on the basin was terminated by the large-scale tectonic uplift across the Sino-Korean platform including the Taebaeksan Basin.

Gwangju Shear Zone : Is it the Tectonic Boundary between the Yeongnam Massif and Okcheon Metamorphic Belt? (광주전단대 : 영남육괴와 옥천변성대의 지구조적 경계?)

  • Ha, Yeongji;Song, Yong-Sun;Kim, Jeong-Min
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.17-30
    • /
    • 2014
  • In this study we carried out SHRIMP U-Pb age dating of detrital zircons from age-unknown meta-sedimentary formations distributed around the NNE-SSW trending Gwangju Shear Zone, a branch of Honam Shear Zone, in the southwestern region of the Korean Peninsula. The meta-sedimentary formations from the west (Yeonggwang) and east (Jangseong) areas of the Gwangju Shear Zone have different patterns of zircon age distributions. Zircons of quartzites from the Yeonggwang area yield clusters at Neoarchean (ca. 2,500 Ma), Paleoproterozoic (ca. 1,860 Ma), Neoproterozoic (ca. 960 Ma) and Paleozoic (ca. 380 Ma) ages, but those of the Jangseong area yield clusters at only Neoarchean (ca. 2,500Ma) and Paleoproterozoic (ca. 1,880 Ma) ages. The contrastive patterns in age indicate that the meta-sedimentary formations from the west and east areas correspond to the meta-sedimentary formations of the Okcheon Metamorphic Belt and the sedimentary formations overlying on the Yeongnam Massif, respectively. The results imply that the Gwangju Shear Zone is the tectonic boundary between the Okcheon Metamorphic Belt and the Yeongnam Massif.