• Title/Summary/Keyword: detection module

Search Result 695, Processing Time 0.034 seconds

A lightweight true random number generator using beta radiation for IoT applications

  • Park, Kyunghwan;Park, Seongmo;Choi, Byoung Gun;Kang, Taewook;Kim, Jongbum;Kim, Young-Hee;Jin, Hong-Zhou
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.951-964
    • /
    • 2020
  • This paper presents a lightweight true random number generator (TRNG) using beta radiation that is useful for Internet of Things (IoT) security. In general, a random number generator (RNG) is required for all secure communication devices because random numbers are needed to generate encryption keys. Most RNGs are computer algorithms and use physical noise as their seed. However, it is difficult to obtain physical noise in small IoT devices. Since IoT security functions are required in almost all countries, IoT devices must be equipped with security algorithms that can pass the cryptographic module validation programs of each country. In this regard, it is very cumbersome to embed security algorithms, random number generation algorithms, and even physical noise sources in small IoT devices. Therefore, this paper introduces a lightweight TRNG comprising a thin-film beta-radiation source and integrated circuits (ICs). Although the ICs are currently being designed, the IC design was functionally verified at the board level. Our random numbers are output from a verification board and tested according to National Institute of Standards and Technology standards.

COS MEMS System Design with Embedded Technology (Embedded 기술을 이용한 COS MEMS 시스템 설계)

  • Hong, Seon Hack;Lee, Seong June;Park, Hyo Jun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.405-411
    • /
    • 2020
  • In this paper, we designed the COS MEMS system for sensing the falling detection and explosive noise of fuse link in COS (Cut Out Switch) installing on the power distribution. This system analyzed the failure characteristics and an instantaneous breakdown of power distribution. Therefore, our system strengths the industrial competence and guaranties the stable power supply. In this paper, we applied BLE (Bluetooth Low Energy) technology which is suitable protocol for low data rate, low power consumption and low-cost sensor applications. We experimented with LSM6DSOX which is system-in-module featuring 3 axis digital accelerometer and gyroscope boosting in high-performance mode and enabling always-on low-power features for an optimal motion for the COS fuse holder. Also, we used the MP34DT05-A for gathering an ultra-compact, low power, omnidirectional, digital MEMS microphone built with a capacitive sensing element and an IC interface. The proposed COS MEMS system is developed based on nRF52 SoC (System on Chip), and contained a 3-axis digital accelerometer, a digital microphone, and a SD card. In this paper of experiment steps, we analyzed the performance of COS MEMS system with gathering the accelerometer raw data and the PDM (Pulse Data Modulation) data of MEMS microphone for broadcasting the failure of COS status.

PROMISE: A QR Code PROjection Matrix Based Framework for Information Hiding Using Image SEgmentation

  • Yixiang Fang;Kai Tu;Kai Wu;Yi Peng;Yunqing Shi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.471-485
    • /
    • 2023
  • As data sharing increases explosively, such information encoded in QR code is completely public as private messages are not securely protected. This paper proposes a new 'PROMISE' framework for hiding information based on the QR code projection matrix by using image segmentation without modifying the essential QR code characteristics. Projection matrix mapping, matrix scrambling, fusion image segmentation and steganography with SEL(secret embedding logic) are part of the PROMISE framework. The QR code could be mapped to determine the segmentation site of the fusion image as a binary information matrix. To further protect the site information, matrix scrambling could be adopted after the mapping phase. Image segmentation is then performed on the fusion image and the SEL module is applied to embed the secret message into the fusion image. Matrix transformation and SEL parameters should be uploaded to the server as the secret key for authorized users to decode the private message. And it was possible to further obtain the private message hidden by the framework we proposed. Experimental findings show that when compared to some traditional information hiding methods, better anti-detection performance, greater secret key space and lower complexity could be obtained in our work.

Interaction Between TCP and MAC-layer to Improve TCP Flow Performance over WLANs (유무선랜 환경에서 TCP Flow의 성능향상을 위한 MAC 계층과 TCP 계층의 연동기법)

  • Kim, Jae-Hoon;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.2
    • /
    • pp.99-111
    • /
    • 2008
  • In recent years, the needs for WLANs(Wireless Local Area Networks) technology which can access to Internet anywhere have been dramatically increased particularly in SOHO(Small Office Home Office) and Hot Spot. However, unlike wired networks, there are some unique characteristics of wireless networks. These characteristics include the burst packet losses due to unreliable wireless channel. Note that burst packet losses, which occur when the distance between the wireless station and the AP(Access Point) increase or when obstacles move temporarily between the station and AP, are very frequent in 802.11 networks. Conversely, due to burst packet losses, the performance of 802.11 networks are not always as sufficient as the current application require, particularly when they use TCP at the transport layer. The high packet loss rate over wireless links can trigger unnecessary execution of TCP congestion control algorithm, resulting in performance degradation. In order to overcome the limitations of WLANs environment, MAC-layer LDA(Loss Differentiation Algorithm)has been proposed. MAC-layer LDA prevents TCP's timeout by increasing CRD(Consecutive Retry Duration) higher than burst packet loss duration. However, in the wireless channel with high packet loss rate, MAC-layer LDA does not work well because of two reason: (a) If the CRD is lower than burst packet loss duration due to the limited increase of retry limit, end-to-end performance is degraded. (b) energy of mobile device and bandwidth utilization in the wireless link are wasted unnecessarily by Reducing the drainage speed of the network buffer due to the increase of CRD. In this paper, we propose a new retransmission module based on Cross-layer approach, called BLD(Burst Loss Detection) module, to solve the limitation of previous link layer retransmission schemes. BLD module's algorithm is retransmission mechanism at IEEE 802.11 networks and performs retransmission based on the interaction between retransmission mechanisms of the MAC layer and TCP. From the simulation by using ns-2(Network Simulator), we could see more improved TCP throughput and energy efficiency with the proposed scheme than previous mechanisms.

A Design of Passenger Detection and Sharing System(PDSS) to support the Driving ( Decision ) of an Autonomous Vehicles (자율차량의 주행을 보조하기 위한 탑승객 탐지 및 공유 시스템 개발)

  • Son, Su-Rak;Lee, Byung-Kwan;Sim, Son-Kweon;Jeong, Yi-Na
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.2
    • /
    • pp.138-144
    • /
    • 2020
  • Currently, an autonomous vehicle studies are working to develop a four-level autonomous vehicle that can cope with emergencies. In order to flexibly respond to an emergency, the autonomous vehicle must move in a direction to minimize the damage, which must be conducted by judging all the states of the road, such as the surrounding pedestrians, road conditions, and surrounding vehicle conditions. Therefore, in this paper, we suggest a passenger detection and sharing system to detect the passenger situation inside the autonomous vehicle and share it with V2V to the surrounding vehicles to assist in the operation of the autonomous vehicle. Passenger detection and sharing system improve the weighting method that recognizes passengers in the current vehicle to identify the passenger's position accurately inside the vehicle, and shares the passenger's position of each vehicle with other vehicles around it in case of emergency. So, it can help determine the driving of a vehicle. As a result of the experiment, the body pressure sensor applied to the passenger recognition sub-module showed about 8% higher accuracy than the conventional resonant sensor and about 17% higher than the piezoelectric sensor.

Detection of Carnation necrotic fleck virus and Carnation ringspot virus Using RT-PCR (RT-PCR에 의한 카네이션괴저바이러스와 카네이션둥근반점바이러스 정밀진단)

  • Lee, Siwon;Kang, Eun-Ha;Heo, Noh-Yeol;Kim, Sang-Mok;Kim, Yu-Jeong;Shin, Yong-Gil
    • Research in Plant Disease
    • /
    • v.19 no.1
    • /
    • pp.36-44
    • /
    • 2013
  • Carnation is considered to be one of the top three cutting flowers in the world, which is a main crop with 21 billion annual volume of manufacture. The four carnation items such as cuttings, seed, plant and unrooted cuttings are imported and exported. Viruses can be easily transmitted during vegetative propagation of carnation. Carnation necrotic fleck virus (CNFV) and Carnation ringspot virus (CRSV) are designated as Korea plant quarantine viruses and inspected. This study was aimed to develop specific primer sets for easy and rapid detection of CNFV and CRSV. Two RT-PCR primer sets were efficiently amplified 288 and 447 bp fragments for CNFV and 503 549 bp fragments for CRSV. Furthermore, developed nested primer sets make possible to high sensitive detection and verification. CNFV nested PCR primer sets all produced band of 147 bp and CRSV nested PCR primer sets did bands of 395 and 347 bp. In addition, plasmid inserted 6 sequences in amplicon were used as a positive control to improve inspection confidence. The successful application of PCR module newly developed in this study will be highly useful for detect of CNFV and CRSV for quarantine inspections.

Flying Cake: An Augmented Game on Mobile Device (Flying Cake: 모바일 단말기를 이용한 실감형 게임)

  • Park, An-Jin;Jung, Kee-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.79-94
    • /
    • 2007
  • In the ubiquitous computing age which uses a high quantity network, mobile devices such as wearable and hand-held ones with a small tamers and a wireless communication module will be widely used in near future. Thus, a lot of researches about an augmented game on mobile devices have been attempted recently. The existing augmented games used a traditional 'backpack' system and a pattern marker. The 'backpack' system is expensive, cumbersome and inconvenient to use, and because of the pattern marker, it is only possible to play the game in the previously installed palace. In this paper, we propose an augmented game called Flying Cake using a face region to create the virtual object(character) without the pattern marker, which manually indicates an overlapped location of the virtual object in the real world, on a small and mobile PDA instead of the cumbersome hardware. Flying Cake is an augmented shooting game. This game supplies us with two types: 1) a single player which attacks a virtual character on images captured by a camera in an outdoor physical area, 2) dual players which attack the virtual character on images which we received through a wireless LAN. We overlap the virtual character on the face region using a face detection technique, and users play Flying Cake though attacking the virtual character. Flying Cake supplies new pleasure to flayers with a new game paradigm through an interaction between the user in the physical world captured by the PDA camera and the virtual character in a virtual world using the face detection.

A Study on the Ransomware Detection System Based on User Requirements Analysis for Data Restoration (데이터 복원이 가능한 사용자 요구사항 분석기반 랜섬웨어 탐지 시스템에 관한 연구)

  • Ko, Yong-Sun;Park, Jae-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.50-55
    • /
    • 2019
  • Recently Ransomware attacks are continuously increasing, and new Ransomware, which is difficult to detect just with a basic vaccine, continuously has its upward trend. Various solutions for Ransomware have been developed and applied. However, due to the disadvantages and limitations of existing solutions, damage caused by Ransomware has not been reduced. Ransomware is attacking various platforms no matter what platform it is, such as Windows, Linux, servers, IoT devices, and block chains. However, most existing solutions for Ransomware are difficult to apply to various platforms, and there is a limit that they are dependent on only some specific platforms while operating. This study analyzes the problems of existing Ransomware detection solutions and proposes the onboard module based Ransomware detection system; after the system defines the function of necessary elements through analyzing requirements that can actually reduce the damage caused by the Ransomware from the viewpoint of users, it supports various OS without pre-installation and is able to restore data even after being infected. We checked the feasibility of each function of the proposed system through the analysis of the existing technology and verified the suitability of the proposed techniques to meet the user's requirements through the questionnaire survey of a total of 264 users of personal and corporate PC users. As a result of statistical analysis of the questionnaire results, it was found that the score of intent to introduce the system was at 6.3 or more which appeared to be good, and the score of intent to change from existing solution to the proposed system was at 6.0 which appeared to be very high.

Development of a Acoustic Acquisition Prototype device and System Modules for Fire Detection in the Underground Utility Tunnel (지하 공동구 화재재난 감지를 위한 음향수집 프로토타입 장치 및 시스템 모듈 개발)

  • Lee, Byung-Jin;Park, Chul-Woo;Lee, Mi-Suk;Jung, Woo-Sug
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.7-15
    • /
    • 2022
  • Since the direct and indirect damage caused by the fire in the underground utility tunnel will cause great damage to society as a whole, it is necessary to make efforts to prevent and control it in advance. The most of the fires that occur in cables are caused by short circuits, earth leakage, ignition due to over-current, overheating of conductor connections, and ignition due to sparks caused by breakdown of insulators. In order to find the cause of fire at an early stage due to the characteristics of the underground utility tunnel and to prevent disasters and safety accidents, we are constantly managing it with a detection system using image analysis and making efforts. Among them, a case of developing a fire detection system using CCTV-based deep learning image analysis technology has been reported. However, CCTV needs to be supplemented because there are blind spots. Therefore, we would like to develop a high-performance acoustic-based deep learning model that can prevent fire by detecting the spark sound before spark occurs. In this study, we propose a method that can collect sound in underground utility tunnel environments using microphone sensor through development and experiment of prototype module. After arranging an acoustic sensor in the underground utility tunnel with a lot of condensation, it verifies whether data can be collected in real time without malfunction.

A Study on the Implementation and Development of Image Processing Algorithms for Vibes Detection Equipment (정맥 검출 장비 구현 및 영상처리 알고리즘 개발에 대한 연구)

  • Jin-Hyoung, Jeong;Jae-Hyun, Jo;Jee-Hun, Jang;Sang-Sik, Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.6
    • /
    • pp.463-470
    • /
    • 2022
  • Intravenous injection is widely used for patient treatment, including injection drugs, fluids, parenteral nutrition, and blood products, and is the most frequently performed invasive treatment for inpatients, including blood collection, peripheral catheter insertion, and other IV therapy, and more than 1 billion cases per year. Intravenous injection is one of the difficult procedures performed only by experienced nurses who have been trained in intravenous injection, and failure can lead to thrombosis and hematoma or nerve damage to the vein. Nurses who frequently perform intravenous injections may also make mistakes because it is not easy to detect veins due to factors such as obesity, skin color, and age. Accordingly, studies on auxiliary equipment capable of visualizing the venous structure of the back of the hand or arm have been published to reduce mistakes during intravenous injection. This paper is about the development of venous detection equipment that visualizes venous structure during intravenous injection, and the optimal combination was selected by comparing the brightness of acquired images according to the combination of near-infrared (NIR) LED and Filter with different wavelength bands. In addition, an image processing algorithm was derived to threshehold and making blood vessel part to green through grayscale conversion, histogram equilzation, and sharpening filters for clarity of vein images obtained through the implemented venous detection experimental module.