• Title/Summary/Keyword: detection and interpolation

Search Result 162, Processing Time 0.03 seconds

Vision-based Real-Time Two-dimensional Bar Code Detection System at Long Range (비전 기반 실시간 원거리 2차원 바코드 검출 시스템)

  • Yun, In Yong;Kim, Joong Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.9
    • /
    • pp.89-95
    • /
    • 2015
  • In this paper, we propose a real-time two-dimensional bar code detection system even at long range using a vision technique. We first perform short-range detection, and then long-range detection if the short-range detection is not successful. First, edge map generation, image binarization, and connect component labeling (CCL) are performed in order to select a region of interest (ROI). After interpolating the selected ROI using bilinear interpolation, a location symbol pattern is detected as the same as for short-range detection. Finally, the symbol pattern is arranged by applying inverse perspective transformation to localize bar codes. Experimental results demonstrate that the proposed system successfully detects bar codes at two or three times longer distance than existing ones even at indoor environment.

A Study on the Prediction Land Use Change by Using the Interpolation of GIS -Focusing on the Scene of HAKONE National Park in Japan- (GIS의 補間(Interpolation)을 이용한 토지이용변동예측에 관한 연구 - 일본 箱根국립공원을 중심으로)

  • 서주환;이시영;김상범;윤재남
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.4
    • /
    • pp.70-81
    • /
    • 1999
  • The methods of landuse change detection have been used with the algorithm of GIS (Geographic Information System). It is used for the Environmental Planning. Ultimately, it is useful to establish environment management system in landscape architecture. As one of environmental elements, the landuse is repeatedly being changed by the interaction of natural and social environments. In addition, the landuse change shows a tendency to certain characteristic. However, the data of analysis environment system are too broad to access the practical use. Therefore, the possibility of using the method of GIS has been increasing. This study is to make the prediction model by using the interpolation of GRASS version 4.1.5 and to consider about a tendency for each element in landuse change of HAKONE national park. The results of study explain as below : 1. The natural forest and the meadow have a larger tendency of decrease. 2. The area of golf club and facility land has not been changed and the some other areas have been changed to the commercial forest. 3. However, because of the natural forest preservation plan since 1970, the destruction shows comprehensively a tendency of decrease.

  • PDF

Fast Object Detection with DPM using Adaptive Bilinear Interpolated Image Pyramid (적응적 쌍선형 보간 이미지 피라미드를 이용한 DPM 기반 고속 객체 인식 기법)

  • Han, Gyu-Dong;Kim, Eung-Tae
    • Journal of Broadcast Engineering
    • /
    • v.25 no.3
    • /
    • pp.362-373
    • /
    • 2020
  • Recently, as autonomous vehicles and intelligent CCTV are growing more interest, the efficient object detection is essential technique. The DPM(Deformable Part Models) which is basis of this paper have used a typical object system that represents highly variable objects using mixtures of deformable part for object. Although it shows high detection performance by capturing part shape and configuration of object model, but it is limited to use in real application due to the complicated algorithm. In this paper, instead of image feature pyramid that takes up a large amount of computation in one part of the detector, we propose a method to reduce the computation speed by reconstructing a new image feature pyramid that uses adaptive bilinear interpolation of feature maps obtained on a specific image scale. As a result, the detection performance for object was lowered a little by 2.82%, however, the proposed detection method improved the speed performance by 10% in comparison with original DPM.

Overload Measurement and Control of Access Control Channel Based on Hysteresis at Satellite Communication of DAMA (이진영상을 이용한 효율적인 에지 기반의 디인터레이싱 보간 알고리즘)

  • Lee Cheong-Un;Kim Sung-Kwan;Lee Dong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.8C
    • /
    • pp.801-809
    • /
    • 2005
  • This paper proposes a new algorithm for improving the performance of the spatial filter which is the most important part of deinterlacing methods. The conventional edge-based algorithms are not satisfactory in deciding the exact edge direction which controls the performance of the interpolation. The proposed algorithm much increases the performance of the intrafield interpolation by finding exact edge directions based on the binary image. Edge directions are decided using 15 by 3 local window to find not only more accurate but also many low-angle edge directions. The proposed interpolation method upgrades the visual quality of the image by alleviating the misleading edge directions. Simulation results for various images show that the proposed method provides better performance than the existing methods do.

Region of Interest Extraction and Bilinear Interpolation Application for Preprocessing of Lipreading Systems (입 모양 인식 시스템 전처리를 위한 관심 영역 추출과 이중 선형 보간법 적용)

  • Jae Hyeok Han;Yong Ki Kim;Mi Hye Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.4
    • /
    • pp.189-198
    • /
    • 2024
  • Lipreading is one of the important parts of speech recognition, and several studies have been conducted to improve the performance of lipreading in lipreading systems for speech recognition. Recent studies have used method to modify the model architecture of lipreading system to improve recognition performance. Unlike previous research that improve recognition performance by modifying model architecture, we aim to improve recognition performance without any change in model architecture. In order to improve the recognition performance without modifying the model architecture, we refer to the cues used in human lipreading and set other regions such as chin and cheeks as regions of interest along with the lip region, which is the existing region of interest of lipreading systems, and compare the recognition rate of each region of interest to propose the highest performing region of interest In addition, assuming that the difference in normalization results caused by the difference in interpolation method during the process of normalizing the size of the region of interest affects the recognition performance, we interpolate the same region of interest using nearest neighbor interpolation, bilinear interpolation, and bicubic interpolation, and compare the recognition rate of each interpolation method to propose the best performing interpolation method. Each region of interest was detected by training an object detection neural network, and dynamic time warping templates were generated by normalizing each region of interest, extracting and combining features, and mapping the dimensionality reduction of the combined features into a low-dimensional space. The recognition rate was evaluated by comparing the distance between the generated dynamic time warping templates and the data mapped to the low-dimensional space. In the comparison of regions of interest, the result of the region of interest containing only the lip region showed an average recognition rate of 97.36%, which is 3.44% higher than the average recognition rate of 93.92% in the previous study, and in the comparison of interpolation methods, the bilinear interpolation method performed 97.36%, which is 14.65% higher than the nearest neighbor interpolation method and 5.55% higher than the bicubic interpolation method. The code used in this study can be found a https://github.com/haraisi2/Lipreading-Systems.

Linear Scratch Detection and Removal Technique for Old Film Sequences Using Wavelet Shrinkage and Interpolation (고전 영화 복원을 위한 웨이블릿 계수축소와 보간법을 이용한 선형 스크래치 검출 및 제거 기술)

  • Kang, Won-Seok;Lee, Eun-Sung;Kim, Sang-Jin;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.5
    • /
    • pp.1-9
    • /
    • 2011
  • This paper presents a novel scratch detection and removal approach for old film images in wavelet-domain. Various scratch detection and removal algorithms have been proposed for past decades. However, accurate scratch detection and removal with a moderate amount of computing effort is still a problem because of trade off between the quality of the film and computational load. For overcoming this problem, we first decompose an input image using a 3-level wavelet transform, and then remove the scratch by shrinking wavelet coefficients using linear interpolation. Experimental results show that the proposed algorithm can efficiently detect and remove the scratch in damaged films, and also be incorporated into old film restoration systems.

Object Detection and 3D Position Estimation based on Stereo Vision (스테레오 영상 기반의 객체 탐지 및 객체의 3차원 위치 추정)

  • Son, Haengseon;Lee, Seonyoung;Min, Kyoungwon;Seo, Seongjin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.4
    • /
    • pp.318-324
    • /
    • 2017
  • We introduced a stereo camera on the aircraft to detect flight objects and to estimate the 3D position of them. The Saliency map algorithm based on PCT was proposed to detect a small object between clouds, and then we processed a stereo matching algorithm to find out the disparity between the left and right camera. In order to extract accurate disparity, cost aggregation region was used as a variable region to adapt to detection object. In this paper, we use the detection result as the cost aggregation region. In order to extract more precise disparity, sub-pixel interpolation is used to extract float type-disparity at sub-pixel level. We also proposed a method to estimate the spatial position of an object by using camera parameters. It is expected that it can be applied to image - based object detection and collision avoidance system of autonomous aircraft in the future.

Design of Efficient Gradient Orientation Bin and Weight Calculation Circuit for HOG Feature Calculation (HOG 특징 연산에 적용하기 위한 효율적인 기울기 방향 bin 및 가중치 연산 회로 설계)

  • Kim, Soojin;Cho, Kyeongsoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.66-72
    • /
    • 2014
  • Histogram of oriented gradient (HOG) feature is widely used in vision-based pedestrian detection. The interpolation is the most important technique in HOG feature calculation to provide high detection rate. In interpolation technique of HOG feature calculation, two nearest orientation bins to gradient orientation for each pixel and the corresponding weights are required. In this paper, therefore, an efficient gradient orientation bin and weight calculation circuit for HOG feature is proposed. In the proposed circuit, pre-calculated values are defined in tables to avoid the operations of tangent function and division, and the size of tables is minimized by utilizing the characteristics of tangent function and weights for each gradient orientation. Pipeline architecture is adopted to the proposed circuit to accelerate the processing speed, and orientation bins and the corresponding weights for each pixel are calculated in two clock cycles by applying efficient coarse and fine search schemes. Since the proposed circuit calculates gradient orientation for each pixel with the interval of $1^{\circ}$ and determines both orientation bins and weights required in interpolation technique, it can be utilized in HOG feature calculation to support interpolation technique to provide high detection rate.

Edge-Adaptive Color Interpolation for CCD Image Sensor

  • Heo, Bong-Su;Hong, Hun-Seop;Gang, Mun-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • The color interpolation scheme can play an important role in overcoming the physical limitation of the CCD image sensor and in increasing the resolution of color signals, while most conventional approaches result in blurred edges and false color artifacts. In this paper, we have proposed an improved edge-adaptive color interpolation scheme for a progressive scan CCD image sensor with RGB color filter array The edge indicator function proposed utilizes not only the within-channel correlation but also the cross-channel correlation, and reflects the edge characteristics of an image adaptively. The color components unavailable for at each channel are interpolated along the edge direction, not across the edges, so that aliasing artifacts are supressed. Furthermore, we eliminated false color artifacts resulting from the color image formation model in the edge-adaptive color interpolation scheme by adopting the switching algorithm based on the color edge detection. Simulation results of the proposed algorithm indicate that the improved edge-adaptive color interpolation scheme produces quantitatively better and visually more pleasing results than conventional approaches.

Frame Rate Up-Conversion with Occlusion Detection Function (폐색영역탐지 기능을 갖는 프레임율 변환)

  • Kim, Nam-Uk;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.20 no.2
    • /
    • pp.265-272
    • /
    • 2015
  • A new technology on video frame rate up-conversion (FRUC) is presented by combining the median filter and motion estimation (ME) with an occlusion detection (OD) method. First, ME is performed to have a motion vector. Then, the OD method is used to refine motion vector in the occlusion region. Since the wrong motion vector can be obtained with high possibility in the occluded area, a median filtering that less depends on the motion vector is applied to that area, and since the motion vector is continuous and robust in the non-occluded area, BDMC(Bi-Directional Motion Compensated interpolation) is applied to obtain interpolated image in that area. BDMC using the bi-directional motion vectors achieves good results when continuity and robustness of the motion vector is higher. Experimental results show that the proposed algorithm provides better performance than the conventional approach. The average gain of PSNR (Peak Signal to Noise Ratio) is approximately 0.16 dB in the test sequences compared with BDMC.