• Title/Summary/Keyword: detailed treatment techniques

Search Result 34, Processing Time 0.029 seconds

Thermal Analysis on a Satellite Box during Launch Stage by Analytical Solution

  • Choi, Joon-Min;Kim, Hui-Kyung;Hyun, Bum-Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.17-25
    • /
    • 2003
  • Simple methods are developed to predict temperatures of a satellite box during launch stage. The box is mounted on outer surface of satellite and directly exposed to space thermal environment for the time period from fairing jettison to separation. These simple methods are to solve a 1st order ordinary differential equation (ODE) which is simplified from the governing equation after applying several assumptions. The existence of analytical solution for the 1st order ODE is determined depending on treatment of time-dependent molecular heating term. Even for the case that the analytical solution is not available due to the time dependent term, the 1st order ODE can be solved by relatively simple numerical techniques. The temperature difference between two different approaches (analytical and numerical solutions) is relatively small (Jess than $1^{\circ}C$ along the time line) when they are applied to STSAT-I launch scenario. The present methods can be generally used as tools to quickly check whether a satellite box is safe against space environment during the launch stage for the case that the detailed thermal analysis is not available.

A Study on the Assignment of the Vibration Classes to the Power Transformers in Operation (154[kV])

  • Kim, Young-Dal
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.11
    • /
    • pp.52-60
    • /
    • 2009
  • High reliability is essential for power transformers, and their fault causes are reportedly more related to mechanical causes than electrical ones. The transformer soundness judgment currently depends only on the electrical insulation characteristic and the chemical test of the insulation oil, so that there are few fundamental measures against the frequent mechanical damages and failures in transformers. The mechanical soundness judgment techniques are conducted through processes that include structural analysis and vibration resistance treatment during the manufacturing process of each manufacturer, but the vibration is not tested during the design, manufacturing, and operating processes since there are no detailed technical standards and procedures on the vibration problem, which are important in terms of maintenance. Therefore, in this study, vibration phenomena were measured from the 32 power transformers in operation in the substations under the Daejeon Power Transmission District Office of the Korean Electric Power Corporation (KEPCO). The vibration was measured at 24 sections ($6{\times}4$) on one side, and only the maximum values were selected from the measured vibration values. This was because the maximum vibration values more significantly affect the soundness of the transformer than the average vibration values. The vibration classes were given considering the maximum vibration based on ISO 10016-1 (2001).

Electrophoretic Tissue Clearing and Labeling Methods for Volume Imaging of Whole Organs

  • Kim, Dai Hyun;Ahn, Hyo Hyun;Sun, Woong;Rhyu, Im Joo
    • Applied Microscopy
    • /
    • v.46 no.3
    • /
    • pp.134-139
    • /
    • 2016
  • Detailed structural and molecular imaging of intact organs has incurred academic interest because the associated technique is expected to provide innovative information for biological investigation and pathological diagnosis. The conventional methods for volume imaging include reconstruction of images obtained from serially sectioned tissues. This approach requires intense manual work which involves inevitable uncertainty and much time to assemble the whole image of a target organ. Recently, effective tissue clearing techniques including CLARITY and ACT-PRESTO have been reported that enables visualization of molecularly labeled structures within intact organs in three dimensions. The central principle of the methods is transformation of intact tissue into an optically transpicuous and macromolecule permeable state without loss of intrinsic structural integrity. The rapidly evolving protocols enable morphological analysis and molecular labeling of normal and pathological characteristics in large assembled biological systems with single-cell resolution. The deep tissue volume imaging will provide fundamental information about mutual interaction among adjacent structures such as connectivity of neural circuits; meso-connectome and clinically significant structural alterations according to pathologic mechanisms or treatment procedures.

COMPACTNESS AND DIRICHLET'S PRINCIPLE

  • Seo, Jin Keun;Zorgati, Hamdi
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.2
    • /
    • pp.193-207
    • /
    • 2014
  • In this paper we explore the emergence of the notion of compactness within its historical beginning through rigor versus intuition modes in the treatment of Dirichlet's principle. We emphasize on the intuition in Riemann's statement on the principle criticized by Weierstrass' requirement of rigor followed by Hilbert's restatement again criticized by Hadamard, which pushed the ascension of the notion of compactness in the analysis of PDEs. A brief overview of some techniques and problems involving compactness is presented illustrating the importance of this notion. Compactness is discussed here to raise educational issues regarding rigor vs intuition in mathematical studies. The concept of compactness advanced rapidly after Weierstrass's famous criticism of Riemann's use of the Dirichlet principle. The rigor of Weierstrass contributed to establishment of the concept of compactness, but such a focus on rigor blinded mathematicians to big pictures. Fortunately, Poincar$\acute{e}$ and Hilbert defended Riemann's use of the Dirichlet principle and found a balance between rigor and intuition. There is no theorem without rigor, but we should not be a slave of rigor. Rigor (highly detailed examination with toy models) and intuition (broader view with real models) are essentially complementary to each other.

Application of Pac-Bio Sequencing, Trinity, and rnaSPAdes Assembly for Transcriptome Analysis in Medicinal Crop Astragalus membranaceus

  • Ji-Nam Kang;Si Myung Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.254-254
    • /
    • 2022
  • Astragalus membranaceus (A. membranaceus) has traditionally been used as a medicinal plant in East Asia for the treatment ofvarious diseases. A. membranaceus belongs to the legume family and is known to be rich in substances such as flavonoids and saponins. Recent pharmacological studies of A. membranaceus have shown that the plant has immunomodulatory, anti-oxidant, anti-cancer, and anti-inflammatory effects. However, knowledge of major biosynthetic pathways in A. membranaceu is still lacking. Recently developed sequencing techniques enable high-quality transcriptome analysis in plants, which is recognized as an important part in elucidating the regulatory mechanisms of many plant secondary metabolic pathways. However, it is difficult to predict the number of transcripts because plant transcripts contain a large number of isoforms due to alternative splicing events, which can vary depending on the assembly platform used. In this study, we constructed three unigene sets using Pac-Bio isoform sequencing, Trinity and rnaSPAdes assembly for detailed transcriptome analysis mA. membranaceus. Furthermore, all genes involved in the flavonoid biosynthetic pathway were searched from three unigene sets, and structural comparisons and expression profiles between these genes were analyzed. The isoflavone synthesis was active in most tissues. Flavonol synthesis was mainly active in leaves and flowers, and anthocyanin synthesis was specific in flowers. Gene structural analysis revealed structural differences in the flavonoid-related genes derived from the three unigene sets. This study suggests the need for the application of multiple unigene sets for the analysis of key biosynthetic pathways in plants.

  • PDF

Could Natural Products Confer Inhibition of SARS-CoV-2 Main Protease? In-silico Drug Discovery

  • Mohamed-Elamir F Hegazy
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.14-14
    • /
    • 2020
  • In December 2019, the COVID-19 epidemic was discovered in Wuhan, China, and since has disseminated around the world impacting human health for millions. Herein, in-silico drug discovery approaches were utilized to identify potential candidates as Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) inhibitors. We investigated several databases including natural and natural-like products (>100,000 molecules), DrugBank database (10,036 drugs), major metabolites isolated from daily used spices (32 molecules), and current clinical drug candidates for the treatment of COVID-19 (18 drugs). All tested compounds were prepared and screened using molecular docking techniques. Based on the calculated docking scores, the top ones from each project under investigation were selected and subjected to molecular dynamics (MD) simulations followed by molecular mechanics-generalized Born surface area (MM-GBSA) binding energy calculations. Combined long MD simulations and MM-GBSA calculations revealed the potent compounds with prospective binding affinities against Mpro. Structural and energetic analyses over the simulated time demonstrated the high stabilities of the selected compounds. Our results showed that 4-bis([1,3]dioxolo)pyran-5-carboxamide derivatives (natural and natural-like products database), DB02388 and Cobicistat (DB09065) (DrugBank database), salvianolic acid A (spices secondary metabolites) and TMC-310911 (clinical-trial drugs database) exhibited high binding affinities with SARS-CoV-2 Mpro. In conclusion, these compounds are up-and-coming anti-COVID-19 drug candidates that warrant further detailed in vitro and in vivo experimental estimations.

  • PDF

Optimize KNN Algorithm for Cerebrospinal Fluid Cell Diseases

  • Soobia Saeed;Afnizanfaizal Abdullah;NZ Jhanjhi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • Medical imaginings assume a important part in the analysis of tumors and cerebrospinal fluid (CSF) leak. Magnetic resonance imaging (MRI) is an image segmentation technology, which shows an angular sectional perspective of the body which provides convenience to medical specialists to examine the patients. The images generated by MRI are detailed, which enable medical specialists to identify affected areas to help them diagnose disease. MRI imaging is usually a basic part of diagnostic and treatment. In this research, we propose new techniques using the 4D-MRI image segmentation process to detect the brain tumor in the skull. We identify the issues related to the quality of cerebrum disease images or CSF leakage (discover fluid inside the brain). The aim of this research is to construct a framework that can identify cancer-damaged areas to be isolated from non-tumor. We use 4D image light field segmentation, which is followed by MATLAB modeling techniques, and measure the size of brain-damaged cells deep inside CSF. Data is usually collected from the support vector machine (SVM) tool using MATLAB's included K-Nearest Neighbor (KNN) algorithm. We propose a 4D light field tool (LFT) modulation method that can be used for the light editing field application. Depending on the input of the user, an objective evaluation of each ray is evaluated using the KNN to maintain the 4D frequency (redundancy). These light fields' approaches can help increase the efficiency of device segmentation and light field composite pipeline editing, as they minimize boundary artefacts.

Laparoscopic Primary Repair with Omentopexy for Duodenal Ulcer Perforation: A Single Institution Experience of 21 Cases

  • Ma, Chung Hyeun;Kim, Min Gyu
    • Journal of Gastric Cancer
    • /
    • v.12 no.4
    • /
    • pp.237-242
    • /
    • 2012
  • Purpose: Despite the great advances in laparoscopic techniques, most active general surgeons do not apply laparoscopic surgery in the treatment of duodenal ulcer perforation when facing a real-life emergency. Therefore, our study was designed to evaluate the feasibility of laparoscopic surgery in duodenal ulcer perforation, and provide a step-by-step protocol with tips and recommendations for less experienced surgeons. Materials and Methods: Between March, 2011 and May, 2012, 21 patients presenting with duodenal ulcer perforation underwent laparoscopic primary repair with omentopexy. There were no contraindications to perform laparoscopic surgery, and the choice of primary repair was decided according to the size of the perforation. The procedure for laparoscopic primary repair with omentopexy consisted of peritoneal lavage, primary suture, and omentopexy using a knot pusher. Results: During the operation, no conversion to open surgery or intra-operative events occurred. The median operation time was 45.0 minutes (20~80 minutes). Median day of commencement of a soft diet was day 6 (4~17 days). After surgery, the median hospital stay was 8.0 days (5~27 days). Postoperative complications occurred in one patient, which included a minor leakage. This complication was resolved by conservative management. Conclusions: Although our study was carried out on a small number of patients at a single institution, we conclude that laparoscopic primary repair can be an effective surgical method in the treatment of duodenal ulcer perforation. We believe that the detailed explanation of our procedure will help beginners to perform laparoscopic primary repair more easily.

A study on the detailed treatment techniques of seoktap(stone stupa) in Jeollado province -in the groove for dropping water and the hole for wing bell of the okgaeseok(roof stone)- (전라도 석탑의 세부 기법 고찰 - 옥개석 물끊기홈과 충탁공을 중심으로 -)

  • Cho, Eun-kyung;Han, Joo-sung;Nam, Chang-keun
    • Korean Journal of Heritage: History & Science
    • /
    • v.40
    • /
    • pp.271-306
    • /
    • 2007
  • One of the distinguishing features of late Jeosun's Hanshi (poem in Chinese) is the numerous creation of Yeonjachyung Keesokshi (serial poem on folklore) which describes the folk manner and folk way of life in detail. Keesokshi's subject matter is the folklike in general including local features, geography, climate, local production, humanity, social conducts, and daily labor for living as well. By its material characteristics, Keesokshi reflects detailed life conditions of the society members in each levels, and represents the local customs as well as the folk emotions. Among the several kinds of Keesokshis, a Sesi Keesokshi focuses only in reciting the folk customs on each seasonal festival days, and the great numbers of such serial poems appear during the latter part of the Jeosun Dynasty. Its overall background is the transition of artistic trend which came after many social changes such as expansion of realism, uprising national consciousness, shaken status system, and the rising of 'Jeosunsi' motives in the Hansi history. Moreover, each writer's various experiences and their interests in the reality and critical minds of common people contributed a crucial roll in creation of Sesi Keesokshi. 178 of the 584 remaining serial Sesi Keesokshi are written particularly about the folk customs in The Grand Full Moon Festival (the first full moon of a year by the lunar calendar). These Hanshis widely reflect the common ways of living by directly accepting the seasonal folk customs as the subject matters. Especially, close to the reality, these poems positively express the people's simple vigorous lives and create unrestrained lively image by describing the joys and sorrows of the folk existence along with their craving. Also, it is notable to have customs such as 'Shil-Ssa-Um' and 'No-gu-ban-kong-yang' as subjects for its rarity in other literatures.

Imaging for Multiple Myeloma according to the Recent International Myeloma Working Group Guidelines: Analysis of Image Acquisition Techniques and Response Evaluation in Whole-Body MRI according to MY-RADS (International Myeloma Working Group의 최신 가이드 라인에 따른 다발성 골수종의 영상검사법 및 MY-RADS에 따른 전신 MRI에서의 영상 획득과 반응 평가 소개)

  • A Yeon Son;Hye Won Chung
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.1
    • /
    • pp.150-169
    • /
    • 2023
  • Multiple myeloma (MM) is a malignant hematologic disease caused by the proliferation of clonal plasma cells in the bone marrow, and its incidence is increasing in Korea. With the development of treatments for MM, the need for early diagnosis and treatment has emerged. In recent years, the International Myeloma Working Group (IMWG) has been constantly revising the laboratory and radiological diagnostic criteria for MM. In addition, as whole-body MRI (WBMR) has been increasing used in the diagnosis and treatment response evaluation of patients with MM, the Myeloma Response Assessment and Diagnosis System (MY-RADS) was created to standardize WBMR image acquisition techniques, image interpretation, and response evaluation methods. Radiologists need to have a detailed knowledge of the features of MM for accurate diagnosis. Thus, in this review article, we describe the imaging method for MM according to the latest IMWG guidelines as well as the image acquisition and response evaluation technique for WBMR according to MY-RADS.