• Title/Summary/Keyword: detailed chemistry

Search Result 321, Processing Time 0.031 seconds

Numerical Simulation of Auto-ignition Process of Diesel Sprays Using Detailed Chemistry and Representative Flamelet Model (상세 화학 반응 모델 및 RIF 모델을 이용한 디젤 분무의 자발화 과정 해석)

  • Yu, Y.W.;Kim, S.K.;Kim, Y.M.;Soh, J.L.
    • Journal of ILASS-Korea
    • /
    • v.5 no.2
    • /
    • pp.61-67
    • /
    • 2000
  • The interaction between chemistry and turbulence is treated by employing the Representative Interactive Flamelet (RIF) Model. The detailed chemistry of 114 elementary steps and 44 chemical species is adopted for the n-heptane/air reaction. In order to account for the spatial inhomogeneity of the scalar dissipation rate, the multi-RIF is used. The effect of the number of RIF on ignition delay is discussed in detail. Numerical results indicate that the present RIF approach successfully predicts the ignition delay time as well as the essential features of a spray auto-ignition process.

  • PDF

Numerical Simulation of Laminar Reacting Flows Using Unstructured Finite Volume Method With Adaptive Refinement

  • Kang, Sung-Mo;Kim, Hoo-Joong;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.2
    • /
    • pp.15-22
    • /
    • 2001
  • A pressure-based, unstructured finite volume method has been applied to couple the chemical kinetics and fluid dynamics and to capture effectively and accurately the steep gradient flame field. The pressure-velocity coupling is handled by two methodologies including the pressure-correction algorithm and the projection scheme. A stiff, operator-split projection scheme for the detailed nonequilibrium chemistry has been employed to treat the stiff reaction source terms. The conservative form of the governing equations are integrated over a cell-centered control volume with collocated storage for all transport variables. Computations using detailed chemistry and variable transport properties were performed for two laminar reacting flows: a counterflow hydrogen-air diffusion flame and a lifted methane-air triple flame. Numerical results favorably agree with measurements in terms of the detailed flame structure.

  • PDF

Numerical Studies on Combustion Characteristics of Diesel Engines using DME Fuel (DME연료 디젤 엔진에서의 연소특성 해석)

  • Yu, Yong-Wook;Lee, Jeong-Won;Kim, Yong-Mo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.143-149
    • /
    • 2008
  • The present study is mainly motivated to investigate the vaporization, auto-ignition and spray combustion processes in DI diesel engine using DME and n-heptane. In order to realistically simulate the dimethyl ether (DME) spray dynamics and vaporization characteristics in high-pressure and high-temperature environment, the high-pressure vaporization model has been utilized. The interaction between chemistry and turbulence is treated by employing the Representative Interaction Flamelet (RIF) model. The detailed chemistry of 336 elementary steps and 78 chemical species is used for the DME/air reaction. Based on numerical results, the detailed discussion has been made for the distinctly different combustion characteristics of DME diesel engine in term of vaporization, ignition delay, pollutant formation, and heat release rate.

Partial Preconditioning Approach for the Solution of Detailed Kinetics Problems Based on Sensitivity Analysis (효율적인 상세 반응 기구 해석을 위한 민감도 기반의 부분 음해법)

  • Kang, K.H.;Moon, S.Y.;Noh, J.H.;Won, S.H.;Choi, J.Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.1
    • /
    • pp.17-22
    • /
    • 2008
  • A partly implicit/quasi-explicit method is introduced for the solution of detailed chemical kinetics with stiff source terms based on the standard fourth-order Runge-Kutta scheme. Present method solves implicitly only the stiff reaction rate equations, whereas the others explicitly. The stiff equations are selected based on the survey of the chemical Jaconian matrix and its Eigenvalues. As an application of the present method constant pressure combustion was analyzed by a detailed mechanism of hydrogen-air combustion with NOx chemistry. The sensitivity analysis reveals that only the 4 species in NOx chemistry has strong stiffness and should be solved implicitly among the 13 species. The implicit solution of the 4 species successfully predicts the entire process with same accuracy and efficiency at half the price.

  • PDF

Numerical study on extinction and acoustic response of diluted hydrogen-air diffusion flames with detailed and reduced chemistry (상세 및 축소 반응 메커니즘을 이용한 희석된 수소-공기 확산화염의 소염과 음향파 응답 특성에 관한 수치해석)

  • Son, Chae-Hun;Jeong, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1527-1537
    • /
    • 1997
  • Extinction characteristics and acoustic response of hydrogen-air diffusion flames at various pressures are numerically studied by employing counterflow diffusion flame as a model flamelet in turbulent flames in combustion chambers. The numerical results show that extinction strain rate increases linearly with pressure and then decreases, and increases again at high pressures. Thus, flames are classified into three pressure regimes. Such nonmonotonic behavior is caused by the change in chemical kinetic behavior as pressure rises. The investigation of acoustic-pressure response in each regime, for better understanding of combustion instability, shows different characteristics depending on pressure. At low pressures, pressure-rise causes the increase in flame temperature and chain branching/recombination reaction rates, resulting in increased heat release. Therefore, amplification in pressure oscillation is predicted. Similar phenomena are predicted at high pressures. At moderate pressures, weak amplification is predicted since flame temperature and chain branching reaction rate decreases as pressure rises. This acoustic response can be predicted properly only with detailed chemistry or proper reduced chemistry.

Non-Adiabatic Flamelet Modeling for Combustion Processes of Oxy-Natural Gas Flame

  • Kim, Gun-Hong;Kim, Yong-Mo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1781-1789
    • /
    • 2005
  • In order to realistically predict the combustion characteristics of the oxy-fuel flame, the present study employs the non-adiabatic flame let approach. In this combustion model, the detailed equilibrium chemistry is utilized to accurately account for the thermal dissociation as well as to properly include the radiative cooling effects on the detailed chemistry. Numerical results indicate that the present approach has the capability to correctly capture the essential features and precise structure of the oxy-fuel flames. In this work, the detailed discussion has been made for the characteristics of oxy-fuel flames, the capability and defect of the present approach and also uncertainties of experimental data.

Skeletal Chemical Mechanisms for a Diesel Fuel Surrogate by the Directed Relation Graph(DRG) (직접 관계 그래프(DRG)를 이용한 디젤 연료의 상세 화학 반응 기구 축소화)

  • Lee, Young-J.;Huh, Kang-Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.2
    • /
    • pp.16-22
    • /
    • 2011
  • It is a challenging task to apply large detailed chemical mechanisms of fuel oxidation in simulation of complex combustion phenomena. There exist a few systematic methodologies to reduce detailed chemical mechanisms to smaller sizes involving less computational load. This research work concerns generation of a skeletal chemical mechanism by a directed relation graph with specified accuracy requirement. Two sequential stages for mechanism reduction are followed in a perfectly stirred reactor(PSR) for high temperature chemistry and to consider the autoignition delay time for low and high temperature chemistry. Reduction was performed for the detailed chemical mechanism of n-heptane consisting of 561 species and 2539 elementary reaction steps. Validation results show acceptable agreement for the autoignition delay time and the PSR calculation in wide parametric ranges of pressure, temperature and equivalence ratio.

An Axisymmetrical Study on the Secondary Reaction of Launch Vehicle Turbine Exhaust Gas Using the Detailed Chemistry Model (상세 화학반응 모델을 이용한 발사체 터빈 배기가스의 이차연소 해석의 축대칭 해석)

  • Kim, Seong-Lyong;Kim, In-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.857-862
    • /
    • 2011
  • 3 dimensional turbine exhaust gas flow was simplified to an axisymmetrical flow and calculated with detailed chemistry models. GRI 35 species-217 reaction step model and simplified 11 species 15 reaction model was applied to the secondary reaction of the turbine exhaust gas and compared. All the model captured the secondary combustion on the base region, and the temperature was 600K higher than that without turbine exhaust gas. This means the local temperature of the base can be higher in the case of real 3 dimensional flow. The simplified model show the similar results to the GRI detailed chemistry model although the former affected the engine plume structure slightly.

  • PDF

Detonation Wave Simulation of Thermally Cracked JP-7 Fuel/Oxygen Mixture using Induction Parameter Modeling (Induction Parameter Modeling을 이용한 열 분해된 JP-7 연료 /산소 혼합기의 데토네이션 파 해석)

  • Cho, Deok-Rae;Shin, Jae-Ryul;Choi, Jeong-Yeol;Yang, Vigor
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.383-391
    • /
    • 2009
  • The detonation wave characteristics of JP-7 and oxygen mixture is investigated by one-step induction parameter model (IPM) obtained from a detailed chemistry mechanism. A general procedure of obtaining reliable one-step kinetics IPM for hydrocarbon mixture from the fully detailed chemistry is described in this study. The IPM is obtained by the reconstruction of the induction time database obtained from a detailed kinetics library. The IPM was confirmed by the comparison of the induction time calculations with that from detailed kinetics. The IPM is later implemented to a fluid dynamics code and applied for the numerical simulation of detonation wave propagation. The numerical results show the detailed characteristics of the detonation wave propagation in JP-7 and oxygen mixture at affordable computing time, which is not be possible by the direct application of the detailed chemical kinetics mechanism of hydrocarbon fuel combustion.

Numerical Modeling for Vaporization, Auto-Ignition and Combustion Processes of Dimethyl Ether (DME) Fuel Sprays (DME 연료의 증발, 점화 및 분무연소특성 해석)

  • Yu, Yong-Wook;Lee, Jeong-Won;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.3
    • /
    • pp.33-39
    • /
    • 2007
  • The present study is mainly motivated to investigate the vaporization, auto-ignition and combustion processes in high-pressure engine conditions. In order to realistically simulate the dimethyl ether (DME) spray dynamics and vaporization characteristics in high-pressure and high-temperature environment, the high-pressure vaporization model is utilized. The interaction between chemistry and turbulence is treated by employing the Representative Interaction Flamelet (RIF) model. The detailed chemistry of 336 elementary steps and 78 chemical species is used for the DME/air reaction. Numerical results indicate that the RIF approach, together with the high-pressure vaporization model, successfully predicts the essential feature of ignition and spray combustion processes.

  • PDF