• Title/Summary/Keyword: destination image

Search Result 172, Processing Time 0.025 seconds

A CNN Image Classification Analysis for 'Clean-Coast Detector' as Tourism Service Distribution

  • CHANG, Mona;XING, Yuan Yuan;ZHANG, Qi Yue;HAN, Sang-Jin;KIM, Mincheol
    • Journal of Distribution Science
    • /
    • v.18 no.1
    • /
    • pp.15-26
    • /
    • 2020
  • Purpose: This study is to analyze the image classification using Convolution Neural Network and Transfer Learning for Jeju Island and to suggest related implications. As the biggest tourist destination in Korea, Jeju Island encounters environmental issues frequently caused by marine debris along the seaside. The ever-increasing volume of plastic waste requires multidirectional management and protection. Research design, data and methodology: In this study, the deep learning CNN algorithm was used to train a number of images from Jeju clean and polluted beaches. In the process of validating and testing pre-processed images, we attempted to explore their applicability to coastal tourism applications through probabilities of classifying images and predicting clean shores. Results: We transformed and augmented 194 small image dataset into 3,880 image data. The results of the pre-trained test set were 85%, 70% and 86%, and then its accuracy has increased through the process. We finally obtained a rapid convergence of 97.73% and 100% (20/20) in the actual training and validation sets. Conclusions: The tested algorithms are expected to implement in applications for tourism service distribution aimed at reducing coastal waste or in CCTVs as a detector or indicator for residents and tourists to protect clean beaches on Jeju Island.

Effect of Service Employees' Jeju Dialects on the Formation and Satisfaction of Tourist Destinations: Focusing on Tourists Visiting the Jungmun Tourist Complex in Jeju. (서비스 종사원의 제주 방언사용이 관광지 이미지 형성 및 만족에 미치는 영향: 제주특별자치도 중문관광단지 방문 관광객을 중심으로)

  • Lim, Hwasoon;Nam, Yoonseob
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.3
    • /
    • pp.520-529
    • /
    • 2018
  • The purpose of this study is to investigate the effect of Jeju dialect of service worker on tourist image, tourist satisfaction and revisit intention. The Regional dialect can be viewed as a cultural element that characterizes the region, It also serves as a medium to inform tourists of the feelings they experience while they are out of their area and visiting other areas. As a result of the study, it was found that the communication factors in the language communication of dialects had a positive(+) effect on the cognitive and emotional images of tourist sites. Interesting factors showed positive(+) effect on cognitive image of sightseeing spot, but did not affect emotional image. As a result of the study, it should be noted that excessive use of regional dialects may not necessarily have a positive effect on the emotions of tourists. If you want to develop tourist products using dialects, you need to pay attention to the use of words and expressions so that there is no misunderstanding.

Dynamic Object Tracking of a Quad-rotor with Image Processing and an Extended Kalman Filter (영상처리와 확장칼만필터를 이용한 쿼드로터의 동적 물체 추종)

  • Kim, Ki-jung;Yu, Ho-Yun;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.641-647
    • /
    • 2015
  • This paper proposes a new strategy for a quad-rotor to track a moving object efficiently by using image processing and an extended Kalman filter. The goal of path planning for the quad-rotor is to design an optimal path from the start point to the destination point. To lengthen the freight time of the quad-rotor, an optimal path is required to reduce the energy consumption. To track a moving object, the mark signed on the moving object has been detected by a camera mounted first on the quad-rotor. The center coordinates of the mark and its area are calculated through the blob analysis which is one type of image processing. The mark coordinates are utilized to obtain information on the motion direction and the area of the mark is utilized to recognize whether the object moves backward or forward from the camera on the quad-rotor. In addition, an extended Kalman filter has been applied to predict the direction and speed of the dynamically moving object. Through these schemes, it is aimed that the quad-rotor can track the dynamic object efficiently in terms of flight distance and time. Through the two different route freights of the quad-rotor, the performance of the proposed system has been demonstrated.

A Simulation of 3-D Navigation System of the Helicopter based on TRN Using Matlab

  • Kim, Eui-Hong;Lee, Hong-Ro
    • Spatial Information Research
    • /
    • v.15 no.4
    • /
    • pp.363-370
    • /
    • 2007
  • This study has been carried for the development of the basic algorithm of helicopter navigation system based on TRN (Terrain Referenced Navigation) with information input from the GPS. The helicopter determines flight path due to Origination-Destination analysis on the Cartesian coordinate system of 3-D DTM. This system shows 3-D mesh map and the O-D flight path profile for the pilot's acknowledgement of the terrain, at first. The system builds TCF (terrain clearance floor) far the buffer zone upon the surface of ground relief to avid the ground collision. If the helicopter enters to the buffer zone during navigation, the real-time warning message which commands to raise the body pops up using Matlab menu. While departing or landing, control of the height of the body is possible. At present, the information (x, y, z coordinates) from the GPS is assumed to be input into the system every 92.8 m of horizontal distance while navigating along flight path. DTM of 3" interval has been adopted from that which was provided by ChumSungDae Co., Ltd..

  • PDF

An Autonomous Mobile System based on Detection of the Road Surface Condition (노면 상태 검출에 기반한 자율 주행 시스템)

  • Jeong, Hye-C.;Seo, Suk-T.;Lee, Sang-H.;Lee, In-K.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.599-604
    • /
    • 2008
  • Recently, many researches for autonomous mobile system have been proposed, which can recognize surrounded environment and navigate to destination without outside intervention. The basic sufficient condition for the autonomous mobile system is to navigate to destination safely without accident. In this paper, we propose a path planning method in local region for safe navigation of autonomous system through evaluation of the road surface distortion(damaged/deformed road, unpaved road, obstacle and etc.). We use laser distance sensor to get the information on the road surface distortion and apply image binalization method to evaluate safe region in the detected local region. We show the validity of the proposed method through the computer simulation based on the artificial local road map.

Design of Deep Learning-Based Automatic Drone Landing Technique Using Google Maps API (구글 맵 API를 이용한 딥러닝 기반의 드론 자동 착륙 기법 설계)

  • Lee, Ji-Eun;Mun, Hyung-Jin
    • Journal of Industrial Convergence
    • /
    • v.18 no.1
    • /
    • pp.79-85
    • /
    • 2020
  • Recently, the RPAS(Remote Piloted Aircraft System), by remote control and autonomous navigation, has been increasing in interest and utilization in various industries and public organizations along with delivery drones, fire drones, ambulances, agricultural drones, and others. The problems of the stability of unmanned drones, which can be self-controlled, are also the biggest challenge to be solved along the development of the drone industry. drones should be able to fly in the specified path the autonomous flight control system sets, and perform automatically an accurate landing at the destination. This study proposes a technique to check arrival by landing point images and control landing at the correct point, compensating for errors in location data of the drone sensors and GPS. Receiving from the Google Map API and learning from the destination video, taking images of the landing point with a drone equipped with a NAVIO2 and Raspberry Pi, camera, sending them to the server, adjusting the location of the drone in line with threshold, Drones can automatically land at the landing point.

Localization for Mobile Robot Using Vertical Line Features (수직선 특징을 이용한 이동 로봇의 자기 위치 추정)

  • 강창훈;안현식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.937-942
    • /
    • 2003
  • We present a self-localization method for mobile robots using vertical line features of indoor environment. When a 2D map including feature points and color information is given, a mobile robot moves to the destination, and acquires images from the surroundings having vertical line edges by one camera. From the image, vertical line edges are detected, and pattern vectors meaning averaged color values of the left and right regions of the each line are computed by using the properties of the line and a region growing method. The pattern vectors are matched with the feature points of the map by comparing the color information and the geometrical relationship. From the perspective transformation and rigid transformation of the corresponded points, nonlinear equations are derived. Localization is carried out from solving the equations by using Newton's method. Experimental results show that the proposed method using mono view is simple and applicable to indoor environment.

Localization for Mobile Robot Using Vertical Lines

  • Kang, Chang-Hun;Ahn, Hyun-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.793-797
    • /
    • 2003
  • In this paper, we present a self-localization method for mobile robots using vertical line features of indoor environment. When a 2D map including feature points and color information is given, a mobile robot moves to the destination, and acquires images by one camera from the surroundings having vertical line edges. From the image, vertical line edges are detected, and pattern vectors meaning averaged color values of the left and right region of each line segment are computed. The pattern vectors are matched with the feature points of the map using the color information and the geometrical relationship of the points. From the perspective transformation of the corresponded points, nonlinear equations are derived. Localization is carried out from solving the equations by using Newton's method. Experimental results show that the proposed method using mono view is simple and applicable to indoor environment.

  • PDF

Color gamut mapping using fictive 3-D CIELAB equidistance sample (가상의 3차원 CIELAB 등거리 색표본을 이용한 색역사상)

  • 곽한봉;오현수;이철희;서봉우;안석출
    • Proceedings of the Korean Printing Society Conference
    • /
    • 2000.12a
    • /
    • pp.0.3-0
    • /
    • 2000
  • Gamut mapping is a technique that acts on cross-media reproduction to transform a color between devices for the purpose of enhancing the appearance or preserving the appearance of an image. Gamut mapping essentially produces color conversion error which depends the gamut mapping method, source and destination devices, and sample points for gamut modeling. For color space conversion between monitor colors and printer colors, empirical representation using sample measurements is currently widely utilized. Color samples are uniformly selected in the device space such as CMY or RGB, represented as color patches, and then measured. However, in the case of printer, these color samples are not evenly distributed inside the printer gamut and the color conversion error is increased. Accordingly, this paper introduces a equally distributed color sampling method in CIELAB space, a device-independent color space, to reduce color conversion error, and the performance is analyzed via color space conversion experiments using tetrahedral interpolation.

  • PDF

Geometric Correction of Mouth Based Key Points of Lips (입술 특징점에 기반한 입의 기하학적 왜곡 보정)

  • 황동국;박희정;전병민
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.11a
    • /
    • pp.271-275
    • /
    • 2003
  • In this paper, we propose a method that corrects the geometric distortion of mouth in an image. the method is composed of two steps - detecting key points and correcting geometric distortion. First, key points of lips in source and destination images are found by using lips detection algorithm. Then, the two images are mapped by using affine transformation and information found in first step. In experiment result for various mouths with different geometric distortion, we found that the proposed method have satisfactory efficiency.

  • PDF