• Title/Summary/Keyword: desorb

Search Result 40, Processing Time 0.033 seconds

Electronic structure and catalytic reactivity of model oxide catalysts

  • Kim, Yu-Gwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.35-35
    • /
    • 2010
  • Understanding the mechanistic details of heterogeneous catalytic reactions will provide a way to tune the selectivity between various competing reaction channels. In this regard, catalytic decomposition of alcohols over the rutile $TiO_2$(110) surface as a model oxide catalyst has been studied to understand the reaction mechanism employing the temperature-programmed desorption (TPD) technique. The $TiO_2$(110) model catalyst is found to be active toward alcohol dehydration. We find that the active sites are bridge-bonded oxygen vacancies where RO-H heterolytically dissociates and binds to the vacancy to produce alkoxy (RO-) and hydroxyl (HO-). Two protons adsorbed onto the bridge-bonded oxygen atoms (-OH) readily react with each other to form a water molecule at ~500 K and desorb from the surface. The alkoxy (RO-) undergoes decomposition at higher temperatures into the corresponding alkene. Here, the overall desorption kinetics is limited by a first-order decomposition of intermediate alkoxy (RO-) species bound to the vacancy. We show that detailed analysis on the yield and the desorption temperatures as a function of the alkyl substituents provides valuable insights into the reaction mechanism. After the catalytic role of the oxygen vacancies has been established, we employed x-ray photoelectron spectroscopy to further study the surface electronic structure related to the catalytically active defective sites. The defect-related state in valence band has been related to the chemically reduced $Ti^{3+}$ defects near the surface region and are found to be closely related to the catalytic activity of the $TiO_2$(110) surface.

  • PDF

Behaviors of Desorption Agents During Removal of Cs From Clay Minerals and Actual Soil

  • Park, Chan Woo;Kim, Ilgook;Yoon, In-Ho;Yang, Hee-Man;Seo, Bum-Kyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.39-49
    • /
    • 2021
  • The behaviors of various desorption agents were investigated during the desorption of cesium (Cs) from samples of clay minerals and actual soil. Results showed that polymeric cation exchange agents (polyethyleneimine (PEI)) efficiently desorbed Cs from expandable montmorillonite, whereas acidic desorption solutions containing HCl or PEI removed considerable Cs from hydrobiotite. However, most desorption agents could desorb only 54% of Cs from illite because of Cs's specific adsorption to selective adsorption sites. Cs desorption from an actual soil sample containing Cs-selective clay mineral illite (< 200 ㎛) and extracted from near South Korea's Kori Nuclear Power Plant was also investigated. Considerable adsorbed 137Cs was expected to be located at Cs-selective sites when the 137Cs loading was much lower than the sample's cation exchange capacity. At this low 137Cs loading, the total Cs amount desorbed by repeated washing varied by desorption agent in the order HCl > PEI > NH4+, and the highest Cs desorption amount achieved using HCl was 83%. Unlike other desorption agents with only cation exchange capabilities, HCl can attack minerals and induce dissolution of metallic elements. HCl's ability to both alter minerals and induce H+/Cs+ ion exchange is expected to promote Cs desorption from actual soil samples.

Effect of a Nonionic Surfactant on the Adsorption and Kinetic Mechanism for the Hydrolysis of Microcrystalline Cellulose by Endoglucanase Ⅰ and Exoglucanase II

  • 김동원;장영훈;정영규;손기향
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.300-305
    • /
    • 1997
  • Effect of a nonionic surfactant, Tween 20 on the adsorption and kinetic mechanism for the hydrolysis of a microcrystalline cellulose, Avicel PH 101, by endoglucanase Ⅰ (Endo Ⅰ) and exoglucanase Ⅱ (Exo Ⅱ) isolated from Trichoderma viride were studied. The Langmuir isotherm parameters, amount of maximum adsorption (Amax) and adsorption equilibrium constant (Kad) for the adsorption, were obtained in the presence and the absence of nonionic surfactant. On the addition of Tween 20, the Kad and Amax values of Exo Ⅱ were decreased, while those of Endo Ⅰ were not affected. These indicate that the adsorption affinity of Exo Ⅱ on the cellulose is weakened by nonionic surfactant, and the surfactant enhanced desorption of Exo Ⅱ from insoluble substrate. The enzymatic hydrolysis of the cellulose can be described by two parallel pseudo-first order reactions using the percentages of easily (Ca) and hardly (Cb) hydrolyzable cellulose in Avicel PH 101 and associated rate constants (ka and kb). The Ca value was increased by adding Tween 20 for all enzyme samples (Exo Ⅱ, Endo Ⅰ and their 1:1 mixture) implying that the low-ordered crystalline fraction in the cellulose may be partly dispersed by surfactant. The ka value was not affect by adding Tween 20 for all enzyme samples (Exo Ⅱ, Endo Ⅰ and their 1:1 mixture). The kb value of Exo Ⅱ was increased by adding Tween 20, while that of Endo Ⅰ was not affected. This suggests that the surfactant helps the Exo Ⅱ desorb from microcrystalline cellulose, and increase the hydrolysis rate. These results were show that the increase of hydrolysis of cellulose by the nonionic surfactant is due to both the activation of Exo Ⅱ and partial defibrillation of the cellulose.

Development of SMH Actuator System Using Hydrogen-Absorbing Alloy (수소저장합금을 이용한 SMH 액추에이터 시스템 개발)

  • Kwon, Tae-Kyu;Hong, Kyung-Ju;Kim, Kyung;Jeon, Won-Suk;Pang, Du-Yeol;Lee, Seong-Cheol;Kim, Nam-Gyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1067-1073
    • /
    • 2007
  • This paper presents development of an special metal hydride(SMH) actuator system using a peltier module. The newly developed simple SMH actuator, consisting of the plated hydrogen-absorbing alloy as a power source, Peltier elements as a heat source and a cylinder with metal bellows as a functioning part, has been developed. The SMH actuator is characterized by its small size, low weight, noiseless operation and a compliance similar to that of human body. A new SMH actuator that uses reversible reactions between the heat energy and mechanical energy of a hydrogen absorbing alloy. It is well known that hydrogen-absorbing alloys can reversibly absorb and desorb a large amount of hydrogen, more than about 1000 times of their own volume. To improve the thermal conductivity of the hydrogen-absorbing alloy, an electro-less copper plating has been carried out. For this purpose, the effects of the electro-less copper plating and the dynamic characteristics of the SMH actuator have been studied. The hydrogen equilibrium pressure increases and hydrogen is desorbed by heating the hydrogen-absorbing alloys, whereas by cooling the alloys, the hydrogen equilibrium pressure decreases and hydrogen is absorbed. The SMH actuator has the characteristic of being light and easy to use. Therefore, it is suitable for medical and rehabilitation applications.

A Study on the Binding Characteristics of $\beta$-Cyclodextrin with Benzene and Its Application on the Bioremediation ($\beta$-시클로덱스트린($\beta$-Cyclodextrin)의 결합 특성과 벤젠의 생물학적 분해에의 적용에 대한 연구)

  • 최종규;손현석;조경덕
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.65-70
    • /
    • 2002
  • Recently, surfactants were frequently used in order to desorb the hydrophobic organic compounds (HOCs) from soil and to enhance the bioavailability. Among them, -cyclodextrin ($\beta$-CD) is one of those. This study was performed to investigate the binding characteristics between benzene and $\beta$-CD and to examine the bioavailability of benzene. First, we investigated binding characteristics between benzene and $\beta$-CD in water and water/soil system. Then, we examined the effect of $\beta$-CD on the biodegradation of benzene in water and water/soil system. Experimental results on the binding characteristics showed that $\beta$-CD resulted in an efficient complex formation with benzene. As -CD concentration increased, the benzene concentration complexed with $\beta$-CD rapidly increased to 30-40% initial benzene added, and reached the equilibrium. We also investigated the effect of $\beta$-CD on the desorption of benzene from soil in the water/soil system. As $\beta$-CD concentration increased, benzene concentration desorbed into water increased up to 90%. How-ever, in its application to biodegradation of benzene in water and water/soil system, the biodegradation rate of benzene did not improved in the presence of $\beta$-CD compared with in the absense of $\beta$-CD. This result indicated that $\beta$-CD was more preferentially used as a carbon source than benzene. Therefore, for remediation of benzene contaminated soils, $\beta$-CD can be used as a surfactant to desert benzene from soil, and then ex-situ chemical treatment can be applied for the remediation.

Design and Development of SMH Actuator System (SMH 액추에이터 시스템 설계 및 개발)

  • Kwon T.K.;Choi. K.H.;Pang. D.Y.;Lee. S.C.;Kim N.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.551-555
    • /
    • 2005
  • This paper presents the temperature-pressure characteristics of SMH actuator using a peltier module. The simple SMH actuator, consisting of the plated hydrogen-absorbing alloy as a power source, Peltier elements as a heat source and a cylinder with metal bellows a functioning part has been developed. The SMH actuator is characterized by its small size, low weight, noiseless operation and a compliance similar to that of the human body. A new special metal hydride(SMH) actuator that uses the reversible reaction between the heat energy and mechanical energy of a hydrogen absorbing ally. It is well known that hydrogen-absorbing alloys can reversibly absorb and desorb a large amount of hydrogen, more than about 1000 times as their own volume. To improve the thermal conductivity of the hydrogen-absorbing alloy, an electro-less copper plating has been carried out. The effects of the electro-less copper plating and the dynamic characteristics of the SMH actuator have been studied. The hydrogen equilibrium pressure increases and hydrogen is desorbed by heating the hydrogen-absorbing alloys, whereas by cooling the alloys, the hydrogen equilibrium pressure decreases and hydrogen is absorbed. Therefor, the SMH actuator has the characteristic of being light and easy to use and so is suitable for use in medical and rehabilitation applications.

  • PDF

Development of SMH Actuator System Using Hydrogen-Absorbing Alloy

  • Kwon, Tae-Kyu;Jeon, Won-Suk;Pang, Du-Yeol;Choi, Kwang-Hun;Kim, Nam-Gyun;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1328-1333
    • /
    • 2005
  • This paper presents the temperature-pressure characteristics of a new SMH actuator using a Peltier module. The SMH actuator is characterized by its small size, low weight, noiseless operation, and compliance similar to that of the human body. The simple SMH actuator, consisting of the plated hydrogen-absorbing alloys as a power source, Peltier elements as a heat source, and a cylinder with metal bellows as a functioning part has been developed. To improve the thermal conductivity of the hydrogen-absorbing alloy, an assembly of copper pipes has been used. It is well known that hydrogen-absorbing alloys can reversibly absorb and desorb a large amount of hydrogen, more than about 1000 times of their own volume. The hydrogen equilibrium pressure increases when hydrogen is desorbed by heating of the hydrogen-absorbing alloys, whereas by cooling the alloys, the hydrogen equilibrium pressure decreases and hydrogen is absorbed. The new special metal hydride (SMH) actuator uses the reversible reaction between the heat energy and mechanical energy of a hydrogen absorbing alloys. The desirable characteristics of SMH actuator, which makes it suitable for the uses in medical and rehabilitation applications, have been also studied. For this purpose, the characteristics of the new SMH actuator for different temperature, pressure, and external load were explored.

  • PDF

Does $N_2O$ react over oxygen vacancy on $TiO_2$(110)?

  • Kim, Bo-Seong;Kim, Yu-Gwon;Li, Z.;Dohnalek, Z.;Kay, B.D.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.196-196
    • /
    • 2011
  • Molecular $N_2O$ has bee known to react over oxygen vacancy on a reduced rutile $TiO_2$(110)-1${\times}$1 surface to desorb as molecular $N_2$ leaving oxygen atom behind. In the present study, we investigated the reaction of $N_2O$ on rutile $TiO_2$(110) using temperature-programmed desorption (TPD). Our results indicate that $N_2O$ does not react over the oxygen vacancy under a typical UHV experimental condition. On a rutile $TiO_2$(110)-1${\times}$1 with a well-defined oxygen vacancy concentration of 5% ($2.6{\times}10^{13}/cm^2$), $N_2O$ desorption features show a monolayer peak maximum at 135 K followed by a small peak maximum at 170 K. When the oxygen vacancy is blocked with $H_2O$, the $N_2O$ peak at 170 K disappears completely, indicating that the peak is due to molecular $N_2O$ interacting with oxygen vacancy. The integrated amount of desorbed $N_2O$ plotted against the amount of adsorbed $N_2O$ however shows a straight line with no offset indicating no loss of $N_2O$ during our cycles of TPD measurements. In addition, our $N_2O$ uptake measurements at 70~100 K showed no $N_2$ (as a reaction product) desorption except contaminant $N_2$. Also, $H_2O$ TPD taken after $N_2O$ scattering up to 350 K indicates no change in the vacancy-related $H_2O$ desorption peak at 500 K showing no change in the oxygen vacancy concentration after the interaction with $N_2O$.

  • PDF

Thermal and Photochemistry of Methyl Iodide on Ice Film Grown on Cu(111)

  • Sohn, Young-Ku;White, John M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1470-1474
    • /
    • 2009
  • Thermal and photochemistry of methyl iodide ($CH_3I)\;adsorbed\;on\;D_2O$ ice film on Cu(111) at 100 K were studied using temperature-programmed desorption (TPD) time-of-flight mass spectrometry (TOF-MS), X-ray and ultraviolet photoelectron spectroscopies. On the basis of TPD, multilayer and monolayer $CH_3I$ molecules desorb from $D_2O$ ice layer at 120 and 130 K, respectively. Photo-irradiation at 100 K exhibits dramatic changes in the TPD and I $3d_{5/2}\;XPS\;of\;CH_3I$ on ice film, due to a dramatic dissociation of $CH_3I$. The dissociation is likely activated by solvated electrons transferred from the metal substrate during photo-irradiation. No other photo-initiated reaction products were found within our instrumental detection limit. During photo-irradiation, the $CH_3I$, $CH_3$ and I could be trapped (or solvated) in ice film by rearrangement (and self-diffusion) of water molecules. A newly appeared parent molecular desorption peak at 145 K is attributed to trapped $CH_3I$. In addition, the $CH_3$ and I may diffuse through ice and chemisorb on Cu(111), indicated by TPD and I $d_{5/2}$ XPS taken with photo-irradiation time, respectively. No molecular ejection was found during photo-irradiation at 100 K. The work functions for $CH_3I/Cu(111),\;D_2O/Cu(111)\;and\;CH_3I/D_2$O/Cu(111) were all measured to be about 3.9 eV, 1.0 eV downward shift from that of clean Cu(111).

Discovery of a New Mechanism to Release Complex Molecules from Icy Grain Mantles around Young Stellar Objects

  • Hoang, Thiem;Tram, Le Ngoc
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.70.4-70.4
    • /
    • 2019
  • Complex organic molecules (COMs) are increasingly observed in the environs of young stellar objects (YSOs), including hot cores/corinos around high-mass/low-mass protostars and protoplanetary disks. It is widely believed that COMs are first formed in the ice mantle of dust grains and subsequently released to the gas by thermal sublimation at high temperatures (T>100 K) in strong stellar radiation fields. In this paper, we report a new mechanism that can desorb COMs from icy grain mantles at low temperatures (T<100K), which is termed rotational desorption. The rotational desorption process of COMs comprises two stages: (1) ice mantles on suprathermally rotating grains spun-up by radiative torques (RATs) are first disrupted into small fragments by centrifugal stress, and (2) COMs and water ice then evaporate rapidly from the tiny fragments (i.e., radius a <1nm) due to thermal spikes or enhanced thermal sublimation due to increased grain temperature for larger fragments (a>1 nm). We discuss the implications of rotational desorption for releasing COMs and water ice in the inner region of protostellar envelopes (hot cores and corinos), photodissociation regions, and protoplanetary disks (PPDs). In shocked regions of stellar outflows, we find that nanoparticles can be spun-up to suprathermal rotation due to supersonic drift of neutral gas, such that centrifugal force can be sufficient to directly eject some molecules from the grain surface, provided that nanoparticles are made of strong material. Finally, we find that large aggregates (a~ 1-100 micron) exposed to strong stellar radiations can be disrupted into individual icy grains via RAdiative Torque Disruption (RATD) mechanism, which is followed by rotational desorption of ice mantles and evaporation of COMs. In the RATD picture, we expect some correlation between the enhancement of COMs and the depletion of large dust grains in not very dense regions of YSOs.

  • PDF