• 제목/요약/키워드: desing procedures

검색결과 2건 처리시간 0.016초

Seismic Design of Bridges in Low to Moderate Seismic Zones

  • Kook, Seung-Kyu
    • 한국지진공학회논문집
    • /
    • 제2권3호
    • /
    • pp.121-127
    • /
    • 1998
  • For the seismic design of bridges in Korea classified as the low to moderate seismic zones, the design concepts provided in the Standard Specification for Highway Bridges, Division I-A: Seismic Design, are adopted, which is basically developed for the strong seismic zones by AASHITO. Accordingly, the design procedures provided for the low to moderate seismic zones are simplified too much to fulfill the purpose of the seismic design. In this paper the design procedures given for the low to moderate seismic zones in the Standard are summarized and discussed in view of the seismic design purpose. From the discussion results some revisions are proposed as conclusions for the reasonable a, pp.ication of the Standard for bridges located in the low to moderate seismic zones.

  • PDF

직교축상의 회전운동용 롤러 종동절을 수반하는 원통형 캠의 형상설계를 위한 상대속도법에 관한 연구 (A study on relative velocity approach for shape desing to cylindrical cam with rotating roller follower on faced-vertical axes)

  • 김성원;신중호;강동우;장세원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.612-615
    • /
    • 2000
  • Cam mechanism is one of the common devices used in many automatic machinery. Specially cylindrical cam generates three dimensional motions. Thus, the shape design procedures must have high accuracy. This paper proposes the shape design procedure for a cylindrical cam and follower mechanism using a relative velocity method. The relative velocity method and the coordinate transformation are used to find a contact point between the cam and the follower. Also, the full shape of the cylindrical cam can be generated by using the geometric relationships and the contact constraints. As a result, this paper presents an example for the shape design of the cylindrical cam in order to prove the accuracy of the design procedures.

  • PDF