• Title/Summary/Keyword: design wave

Search Result 3,264, Processing Time 0.029 seconds

A Study on the Numerical Analysis Methods for Predicting Strength Test Result of Box Girder under Bending Moment (휨 모멘트를 받는 박스거더 구조 강도 실험에 대한 수치해석 방법에 관한 연구)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.488-496
    • /
    • 2023
  • Ship and bridge structures are a type of long box-shaped structure, and resistance to vertical bending moment is a key factor in their structural design. In particular, because box girders are repeatedly exposed to irregular wave loads for a long time, the continuous collapse behavior of structural members must be accurately predicted. In this study, plastic collapse behavior, including buckling according to load changes of the box girder receiving pure bending moments, was analyzed using a numerical analysis method. The analysis targets were selected as three box girders used in the Gordo experiment. The cause of the difference was considered by comparing the results of the structural strength experiment with those of non-linear finite element analysis. This study proposed a combination of the entire and local sagging shape to reflect the effect of the initial sagging caused by welding heat that is inevitably used to manufacture carbon steel materials. The procedures reviewed in the study and the contents of the initial sagging configuration can be used as a good guide for analyzing the final strength of similar structures in the future.

Incidence of postoperative pain after using single continuous, single reciprocating, and full sequence continuous rotary file system: a prospective randomized clinical trial

  • Umesh Kumar;Pragnesh Parmar;Ruchi Vashisht;Namita Tandon;Charan Kamal Kaur
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.23 no.2
    • /
    • pp.91-99
    • /
    • 2023
  • Background: Extrusion of debris is a major factor that results in postoperative pain during root canal treatment with various instruments and instrumentation techniques. Therefore, instrumentation techniques that extrude minimal debris into the periapical area while reducing pain are desirable. This study aimed to compare the incidence of postoperative pain and intake of analgesic medication (frequency and quantity) after endodontic treatment of mandibular posterior teeth using two single files and full-sequence continuous rotary systems with different kinematic motions. Methods: Thirty-five of 105 patients were assigned equally to three groups according to the instrumentation system used: ProTaper Next (PN) X2, 25/06 (Dentsply, Maillefer, Ballaigues, Switzerland), One Shape (OS), #0.25/06 (Micro Mega, Besancon, France), and Wave One Gold (WG), Red - #0.25, 0.07 (Dentsply, Maillefer, Ballaigues, Switzerland). Five specialists were included in this study design; each professional prepared 21 teeth, and randomly selected 7 per instrument system. The VAS sheet ranging from 0 to 10 was used to record the initial and postoperative pains at 24, 48, and 72 h, and 7th day after single visit endodontic treatment in mandibular premolars and molars with a diagnosis of asymptomatic irreversible pulpitis with or without apical periodontitis. Postoperatively, an analgesic, ibuprofen 400 mg was administered for intolerable pain at a dose of 1 tablet for 6 h. The patients were asked over the telephone regarding postoperative pain at intervals of 24, 48, and 72 h, and 7th day using a visual analogue scale. Result: There were no statistically significant differences among the PN, OS, and WG systems (P > 0.05) with regard to the incidence of postoperative pain at any of the four time points assessed. Conclusion: The intensity of postoperative pain, frequency, and analgesic intake were similar across all three types of instrument systems; however, the reciprocating single file (WG) was associated with less postoperative pain than the full sequence continuous rotary file.

A Fundamental Study on Laboratory Experiments in Rock Mechanics for Characterizing K-COIN Test Site (K-COIN 시험부지 특성화를 위한 암석역학 실내실험 기초 연구)

  • Seungbeom Choi;Taehyun Kim;Saeha Kwon;Jin-Seop Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.109-125
    • /
    • 2023
  • Disposal repository for high-level radioactive waste secures its safety by means of engineered and natural barriers. The performance of these barriers should be tested and verified through various aspects in terms of short and/or long-term. KAERI has been conducting various in-situ demonstrations in KURT (KAERI Underground Research Tunnel). After completing previous experiment, a conceptual design of an improved in-situ experiment, i.e. K-COIN (KURT experiment of THMC COupled and INteraction), was established and detailed planning for the experiment is underway. Preliminary characterizations were conducted in KURT for siting a K-COIN test site. 15 boreholes with a depth of about 20 m were drilled in three research galleries in KURT and intact rock specimens were prepared for laboratory tests. Using the specimens, physical measurements, uniaxial compression, indirect tension, and triaxial compression tests were conducted. As a result, specific gravity, porosity, elastic wave velocities, uniaxial compressive strength, Young's modulus, Poisson's ratio, Brazilian tensile strength, cohesion, and internal friction angle were estimated. Statistical analyses revealed that there did not exist meaningful differences in intact rock properties according to the drilled sites and the depth. Judging from the uniaxial compressive strength, which is one of the most important properties, all the specimens were classified as very strong rock so that mechanical safety was secured in all the regions.

Growth of Globalization Cultural Spread and Technological Innovation Study with Anti-Globalization (세계화의 문화 확산과 반세계화에 따른 기술혁신 성장연구)

  • Seo, Dae-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.769-777
    • /
    • 2023
  • Globalization has brought about rapid economic, technological, and cultural changes. In order for countries around the world to communicate, recognize and understand globalization, creativity or planning ability can be used to code. In this paper, we would like to present and prove a data analysis that can solve world problems. In the global market, the value of goods or services increases with connectivity. This connection is becoming one of the factors that increase the value of culture. Changes taking this into account promoted cultural spread and innovative growth, and increased productivity and competitiveness in each region of the world. This paper compares the income of the middle class in the United States on the impact of globalization and anti-globalization on cultural spread and innovative growth. Globalization has created an environment in which various elements of K-culture can interact and spread. Through the Internet, social media, and international travel, globalization has had a positive impact on Korea's innovative growth. In areas such as economic activity, technological innovation, and creative industries, globalization has facilitated new tech and approaches, Through this, it changed the existing economic model and contributed to exports K-culture with a new middle class model. However, globalization in the cultural industry can result in the loss of regional characteristics & individuality, which can lead to the middle class cultural unification and alienation(chasm). As a result of the empirical analysis of K-exports for the middle income in the United States, cultural diffusion and innovation must be developed even in anti-globalization. With these industrial changes the soft power value of the Korean Wave proves that it can create value for use for the middle class of major exporting countries.

Assessment of Design water level variation Due to Climate Change for Port Nam-Hyang, Ulleng-Do (기후변화 시나리오에 따른 울릉도 남양항의 설계수위 변화 평가)

  • Kwon, Kyong Hwan;Park, Jee Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.219-219
    • /
    • 2022
  • 지구 온난화와 함께 발생하는 해수면 상승은 한반도의 해안지역을 비롯하여 울릉도 등 도서지역 전반에 걸쳐 진행 중이다. 또한 해수면의 온도 상승으로 인한 열대저기압의 생성 시 에너지 공급이 증가하며 연안으로 내습하는 파랑 내습 에너지가 커지게 된다. 경상북도 울릉군에 위치한 남양항은 최근 2019년 태풍 다나스 및 2020년 태풍 마이삭 등에 의해 고파랑 혹은 침수 피해가 발생하여 항 내에서는 물양장과 선박이 파괴되고 방파제가 전도되는 등의 피해가 속출하였다. 동해안의 태풍 내습, 지구 온난화와 저기압 발달에 의한 수위 상승 등과 같은 다양한 해양기후를 고려한 연안 구조물의 파랑 영향을 검토하는 것이 중요할 것으로 판단되었다. 기상청 태풍센터에서 제공하는 1979년부터 2020년까지 한반도 해역에 내습한 태풍 중 울릉도에 영향을 미친 태풍은 18개로 울릉도 인근에 영향을 준 내습 태풍을 10년 단위로 분석해 보면, 1980년대 3개, 1990년대 2개, 2000년대 8개, 2010년대 3개, 2020년 2개로 2000년대에 울릉도 영향권에 들어간 태풍이 가장 많았으며, 심해파 추산 기간 이후 2020년 1년 동안 울릉도 인근으로 마이삭, 하이선과 같은 2개의 태풍이 연속적으로 영향을 주었다. 울릉도에 영향을 미친 18개 태풍을 대상으로 일본 기상청(JMA)에서 제공하는 1시간 바람장을 이용하여 파랑 후측 수치 모의를 수행하였으며, 해양수산부와 기상청 관측 부이를 이용하여 파랑에 대한 정확도를 확보하였다. 고파랑 내습 시 연안에 조우하는 수위 조건은 파랑 에너지의 증가를 결정하게 되며, 항만 구조물의 설계에 적용되고 있는 약최고고조위 이상(4대분조의 최대 조위)의 최극조위 조건에서 해안 구조물에 월파 및 침수 피해를 주는 요인으로 작용할 수 있다. 이를 바탕으로 울릉도 남양항에서 폭풍 시 내습한 최극고조위(0.65m)와 IPCC 5차 보고서에 제시한 최악의 시나리오(RCP 8.5) 조건에서 울릉도에서 확인된 0.79 cm 상승고를 반영하여 범람위험평가를 광역에서의 계산 결과를 입력자료로 하여 준 3차원 비 정수압 파랑 변형 수치 모형인 MIKE 3 Wave를 사용하여 실험하였다. 해수면 상승에 의한 수위 상승고는 연안 파랑 증가에 영향을 주었으며 연안 구조물의 침수 피해에 영향을 줄 것으로 판단되었다. 월파 차단, 파랑 차폐의 목적으로 건설되는 구조물의 규모 및 천단고 등을 설정하는데 설계 수위의 선정은 중요하다. 수치 실험 결과를 바탕으로 방파제 및 호안의 범람 위험 평가를 수행하고 구조물 설계 시 이러한 해수면 상승고가 반영된 설계가 중요하다는 것을 위험 평가를 통해 확인할 수 있다.

  • PDF

Study on Development of Digital Ocean Information Contents for Climate Change and Environmental Education : Focusing on the 3D Simulator Experiencing Sea Level Rise (기후변화 환경교육을 위한 디지털 해양정보 콘텐츠 개발 방안 연구 - 해수면 상승 체험 3D 시뮬레이터를 중심으로 -)

  • Jin-Hwa Doo;Hong-Joo Yoon;Cheol-Young Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.953-964
    • /
    • 2023
  • Climate change is undeniably the most urgent challenge that humanity faces today. Despite this, the level of public awareness and understanding of climate change remains insufficient, indicating a need for more proactive education and the development of supportive content. In particular, it is crucial to intensify climate change education during elementary and secondary schooling when values and ethical consciousness begin to form. However, there is a significant lack of age-appropriate, experiential educational content. To address this, our study has developed an innovative 3D simulator, enabling learners to indirectly experience the effects of climate change, specifically sea-level rise. This simulator considers not only sea-level rise caused by climate change but also storm surges, which is a design based on the analysis of long-term wave observation big data. To make the simulator accessible and engaging for students, we utilized the 'Unity' game engine. We further propose using this simulator as a part of a comprehensive educational program on climate change.

A study on statistical characteristics of time-varying underwater acoustic communication channel influenced by surface roughness (수면 거칠기에 따른 수면 경로의 시변 통신채널 통계적 특성 분석)

  • In-Seong Hwang;Kang-Hoon Choi;Jee Woong Choi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.491-499
    • /
    • 2023
  • Scattering by Sea surface roughness occurs due to sea level roughness, communication performance deteriorates by causing frequency spread in communication signals and time variation in communication channels. In order to compare the difference in time variation of underwater acoustic communication channel according to the surface roughness, an experiment was performed in a tank owned by Hanyang University Ocean Acoustics Lab. Artificial surface roughness was created in the tank and communication signals with three bandwidths were used (8 kHz, 16 kHz, 32 kHz). The measured surface roughness was converted into a Rayleigh parameter and used as a roughness parameter, and statistical analysis was performed on the time-varying channel characteristics of the surface path using Doppler spread and correlation time. For the Doppler spread of the surface path, the Weighted Root Mean Square Doppler spread (wfσν) that corrected the effect of the carrier frequency and bandwidth of the communication signal was used. Using the correlation time of the surface path and the energy ratio of the direct path and the surface path, the correlation of total channels was simulated and compared with the measured correlation time of total channels. In this study, we propose a method for efficient communication signal design in an arbitrary marine environment by using the time-varying characteristics of the sea surface path according to the sea surface roughness.

Comparing Physical and Thermal Environments Using UAV Imagery and ENVI-met (UAV 영상과 ENVI-met 활용 물리적 환경과 열적 환경 비교)

  • Seounghyeon KIM;Kyunghun PARK;Bonggeun SONG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.145-160
    • /
    • 2023
  • The purpose of this study was to compare and analyze diurnal thermal environments using Unmanned Aerial Vehicles(UAV)-derived physical parameters(NDVI, SVF) and ENVI-met modeling. The research findings revealed significant correlations, with a significance level of 1%, between UAV-derived NDVI, SVF, and thermal environment elements such as S↑, S↓, L↓, L↑, Land Surface Temperature(LST), and Tmrt. In particular, NDVI showed a strong negative correlation with S↑, reaching a minimum of -0.52** at 12:00, and exhibited a positive correlation of 0.53** or higher with L↓ at all times. A significant negative correlation of -0.61** with LST was observed at 13:00, suggesting the high relevance of NDVI to long-wavelength radiation. Regarding SVF, the results showed a strong relationship with long-wave radiative flux, depending on the SVF range. These research findings offer an integrated approach to evaluating thermal comfort and microclimates in urban areas. Furthermore, they can be applied to understand the impact of urban design and landscape characteristics on pedestrian thermal comfort.

Experimental study on structural integrity assessment of utility tunnels using coupled pulse-impact echo method (결합된 초음파-충격 반향 기법 기반의 일반 지하구 구조체의 건전도 평가에 관한 실험적 연구)

  • Jin Kim;Jeong-Uk Bang;Seungbo Shim;Gye-Chun Cho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.479-493
    • /
    • 2023
  • The need for safety management has arisen due to the increasing number of years of operated underground structures, such as tunnels and utility tunnels, and accidents caused by those aging infrastructures. However, in the case of privately managed underground utility ducts, there is a lack of detailed guidelines for facility safety and maintenance, resulting in inadequate safety management. Furthermore, the absence of basic design information and the limited space for safety assessments make applying currently used non-destructive testing methods challenging. Therefore, this study suggests non-destructive inspection methods using ultrasonic and impact-echo techniques to assess the quality of underground structures. Thickness, presence of rebars, depth of rebars, and the presence and depth of internal defects are assessed to provide fundamental data for the safety assessment of box-type general underground structures. To validate the proposed methodology, different conditions of concrete specimens are designed and cured to simulate actual field conditions. Applying ultrasonic and impact signals and collecting data through multi-channel accelerometers determine the thickness of the simulated specimens, the depth of embedded rebar, and the extent of defects. The predicted results are well agreed upon compared with actual measurements. The proposed methodology is expected to contribute to developing safety diagnostic methods applicable to general underground structures in practical field conditions.

State-Space Equation Model for Motion Analysis of Floating Structures Using System-Identification Methods (부유식 구조체 운동 해석을 위한 시스템 식별 방법을 이용한 상태공간방정식 모델)

  • Jun-Sik Seong;Wonsuk Park
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.85-93
    • /
    • 2024
  • In this paper, we propose a method for establishing a state-space equation model for the motion analysis of floating structures subjected to wave loads, by applying system-identification techniques. Traditionally, the motion of floating structures has been analyzed in the time domain by integrating the Cummins equation over time, which utilizes a convolution integral term to account for the effects of the retardation function. State-space equation models have been studied as a way to efficiently solve floating-motion equations in the time domain. The proposed approach outlines a procedure to derive the target transfer function for the load-displacement input/output relationship in the frequency domain and subsequently determine the state-space equation that closely approximates it. To obtain the state-space equation, the method employs the N4SID system-identification method and an optimization approach that treats the coefficients of the numerator and denominator polynomials as design variables. To illustrate the effectiveness of the proposed method, we applied it to the analysis of a single-degree-of-freedom model and the motion of a six-degree-of-freedom barge. Our findings demonstrate that the presented state-space equation model aligns well with the existing analysis results in both the frequency and time domains. Notably, the method ensures computational accuracy in the time-domain analysis while significantly reducing the calculation time.