• Title/Summary/Keyword: design storm

Search Result 256, Processing Time 0.024 seconds

Analysis of Storm Event Characteristics for Stormwater Best Management Practices Design (강우유출수 관리시설의 설계를 위한 강우사상 특성 분석)

  • Kim, Hak Kwan;Ji, Hyun Seo;Jang, Sun Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.73-80
    • /
    • 2017
  • The objective of this study is to investigate whether the daily rainfall depth derived from daily data represents the event rainfall depth derived from hourly data. For analysis, the 85th, 90th, and 95th percentile daily rainfall depths were first computed using daily rainfall data (1986~2015) collected at 63 weather stations. In addition, the storm event was separated by the interevent time definition (IETD) of 6, 12, 18, and 24 hr using hourly rainfall data. Based on the separated storm events, the 85th, 90th, and 95th percentile event rainfall depths were calculated and compared with the using hourly rainfall data with the 85th, 90th, and 95th percentile daily rainfall depths. The event rainfall depths computed using the IETD were greater than the daily rainfall depths. The difference between the event rainfall depth and the daily rainfall depth affects the design and size of the facility for controlling the stormwater. Therefore, the designer and policy decision-maker in designing the stormwater best management practices need to take into account the difference generated by the difference of the used rainfall data and the selected IETD.

Estimation of Stormwater Interception Rate for Bio-retention LID Facility (생태저류지 LID 시설의 강우유출수 처리비 산정)

  • Choi, Jeonghyeon;Lee, Okjeong;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.5
    • /
    • pp.563-571
    • /
    • 2017
  • Because of the rapid progress of urbanization in recent decades, the proportion of impervious areas in cities has increased. As a result, hydrological properties of urban streams have changed and non-point pollution sources have increased, that have had considerable influence on human life and ecosystems. To manage these situations, application of non-point pollution reduction facilities and LID facilities are expanding recently. In this study, it is investigated if rainfall interception rate used in design of non-point pollution reduction facilities can be applied to design of LID facilities. For this purpose, EPA SWMM is constructed for part of Noksan National Industrial Complex area wherein long-term observed storm water data can be obtained and storm water interception rates for various design capacities of a bio-retention LID facility reservoirs are estimated. While sensitivity of storm water interception rate according to design specifications of bio-retention facility is not large, sensitivity of storm water interception rate according to regional rainfall characteristics is relatively large. As a result of comparing present rainfall interception rate estimation method with the one proposed in this study, the present method is highly likely to overestimate performance of the bio-retention facility. Finally, a new storm water interception rate formula for bio-retention LID facility is proposed.

Reconfiguration of Apache Storm for InfiniBand Communications (InfiniBand RDMA 통신을 위한 Apache Storm의 재구성)

  • Yang, Seokwoo;Son, Siwoon;Moon, Yang-Sae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.8
    • /
    • pp.297-306
    • /
    • 2018
  • In this paper, we address how to apply Apache Storm, a distributed stream processing framework, to InfiniBand, a high performance communication device. An easy way to run Storm on InfiniBand is to simply use IPoIP (IP over InfiniBand). However, this method causes a serious CPU load on the node, which is caused by frequent context switches and buffer copies. To solve this problem, we propose a new communication method using InfiniBand's Remote Direct Memory Access (RDMA) function in Storm. First, we design and implement RJ-Netty (RDMA/JXIO Netty), a new framework that replaces Netty, the legacy framework, to exploit RDMA functionality. Second, we reimplement the related classes so that Storm can use both existing Netty and new RJ-Netty. Third, we extend the JXIO server functionality so as to support multi-threading to maximize the performance of RJ-Netty. Experimental results show that the proposed RJ-Netty significantly reduces CPU load while improving message throughput compared to IPoIB as well as Ethernet. This paper is the first attempt to run Apache Storm on InfiniBand, and we believe that it is an excellent research result that improves the performance of Storm by using InfiniBand RDMA.

The Management of Nonpoint Source and Storm Water Reduction with LID Techniques in Inchon City, South Korea

  • Lim, Dohun;Lee, Yoonjin
    • Journal of Environmental Science International
    • /
    • v.24 no.10
    • /
    • pp.1239-1251
    • /
    • 2015
  • Impervious areas have been expanded by urbanization and the natural structure of water circulation has been destroyed. The limits of centralized management for controlling storm water runoff in urban areas have been suggested. Low impact development (LID) technologies have been promoted as a crucial alternative, establishing a connection with city development plans to build green infrastructures in environmentally friendly cities. Thus, the improvement of water circulation and the control of nonpoint source were simulated through XP-SWMM (storm water and wastewater management model for experts) in this study. The application of multiple LID combination practices with permeable pavements, bioretention cells, and gutter filters were observed as reducing the highest runoff volume by up to 70%. The results from four different LID installation scenarios indicated that permeable paving is the most effective method for reducing storm water runoff. The rate of storm water runoff volume reduced as the rainfall duration extended. Based on the simulation results, each LID facility was designed and constructed in the target area. The LID practices in an urban area enable future studies of the analysis of the criteria, suitable capacity, and cost-efficiency, and proper management methods of various LID techniques.

Performance Evaluation of a Double Layer Biofilter System to Control Urban Road Runoff (I) - System Design - (이중층 토양 여과시설을 이용한 도로 강우 유출수 처리성능 평가 (I) - 시설 설계인자 결정을 중심으로 -)

  • Cho, Kang Woo;Kim, Tae Gyun;Lee, Byung Ha;Lee, Seul Bi;Song, Kyung Guen;Ahn, Kyu Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.599-608
    • /
    • 2009
  • This manuscript covers the results of field investigation and lab-scale experiments to design a double-layered biofilter system to control urban storm runoff. The biofilter system consisted of a coarse soil layer (CSL) for filtration and fine soil layer (FSL) for adsorption and biological degradation. The variations of flow rate and water quality of runoff from a local expressway were monitored for seven storm events. Laboratory column experiments were performed using seven kinds of soil and mulch to maximize pollutants removal. The site mean concentration (SMC) of storm runoff from the drainage area (runoff coefficient: 0.92) was measured to be 203 mg/L for SS, 307 mg/L for $TCOD_{Cr}$, 12.3 mg/L for TN, 7.3 mg/L for ${NH_4}^+-N$, and 0.79 mg/L for TP, respectively. This study employed a new design concept, to cover the maximum rainfall intensity with one month recurrence interval. Effective storms for last ten years (1998-2007) in seoul suggested the design rainfull intensity to be 8.8 mm/hr Single layer soil column showed the maximum removal rate of pollutants load when the uniformity coefficient of CSL was 1.58 and the silt/clay contents of FSL was virtually 7%. The removal efficiency during operation of double layer soil column was 98% for SS and turbidity, 75% for TCODCr, 56% for ${NH_4}^+-N$, 87% for TP, and 73-91% for heavy metals. The hydraulic conductivity of the soil column, 0.023 cm/sec, suggested that the surface area of the biofilter system should be about 1% of the drainage area to treat the rainfall intensity of one month recurrence interval.

Estimation of the Stormwater Impoundments Volume Dependent on the Durations of Design Rainfall (계획강우의 지속기간에 따른 저류지용량의 산정)

  • Yun, Yeo-Jin;Lee, Jae-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.415-426
    • /
    • 2001
  • After Disaster Impact Assessment(DIA) Program was particed, the wide variety of hydrological data are estimated by introducing the concept of critical storm duration to calculate the stormwater impoundments as the alternative of increasing runoff due to many developments. Critical storm duration is varied by a lot of hydraulic structures, drainage characteristics, temporal distribution of design rainfall, return period, and runoff models. In this study the methods of estimating the proper volume to design the stormwater impoundments are proposed to determine the required volume by comparing and analyzing the maximum stormwater impoundments in accordance with the impoundment volume and rainfall duration by using the concept of storage ratio presented in the existing studies. The methods of determining the critical storm duration of design rainfall which cause the maximum load from the runoff hydrograph will be studied as analyzing rainfall-runoff using the various runoff models and observed data.

  • PDF

Evaluation of shelter performance following the 2013 Moore tornado

  • Scott, Pataya L.;Liang, Daan
    • Wind and Structures
    • /
    • v.21 no.4
    • /
    • pp.369-381
    • /
    • 2015
  • Moore, Oklahoma was hit by an EF5 tornado on May 20, 2013. The tornado track slightly overlapped with two previous tornadoes that occurred on May 3, 1999 and May 8, 2003 respectively. A research team from Texas Tech University was deployed to investigate the performance of shelters based on observation of their post-storm conditions. Sixty-one shelter units were further documented by size, manufacturer, and date of installation if available. Then they were crossed referenced with the external databases to determine their compliance with design and construction standards by the International Code Council/National Storm Shelter Association and/or criteria from the Federal Emergency Management Agency publications. Wind intensity was estimated for each shelter location using the EF scale. Results showed a marked increase in the number of exterior underground shelters as well as the popularity of a new in-garage floor underground shelter design. All of the units provided protection for their occupants with no loss of life reported. However, one older shelter had a door failure due to neglect of maintenance. Recommendations were made to improve future performance of shelters.

Application of storm water management model to designing the sponge city facilities in the Athletes Village of Military World Games in Wuhan

  • Liu, Jian;Liu, Yan;Liu, Ru;Li, Sixin;Wu, Lingyi
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.346-352
    • /
    • 2017
  • This study discusses application of the storm water management model (SWMM) to designing the sponge city facilities in the Athletes Village of Military World Games in Wuhan in October 2019. The SWMM was used to simulate the runoff processes and reduction efficiencies of the sponge city facilities. The runoffs of the sponge city facilities were compared with those of traditional drainage system for the design rainfall of 35.2mm and the rainfalls with different recurrence periods. The results show that the hign density sponge city facilities could meet the requirements for 80% of annual runoff control rate, SWMM can determine the scales of the sponge city facilities and effectively simulate the hydrological processes for different layout schemes. The simulation model is also helpful to making optimization of the sponge city facility layout.

  • PDF

KORED/StormNT: Design and Implementation of a Storage Manager for Spatial Database (KORED/StormNT: 공간 데이터베이스를 위한 저장관리자의 설계 및 구현)

  • 김종현;김명근;김성희;배해영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.235-237
    • /
    • 2001
  • 기존의 대용량 멀티미디어 데이터와는 달리 다양한 크기와 접근 패턴을 가지는 공간데이터를 효율적으로 저장 관리하기 위해서는 이러한 공간 데이터의 특성을 고려한 공간데이터베이스 시스템을 위해서는 공간데이터를 저장 관리하기 위한 저장관리자의 연구가 선행되어야 한다. 본 논문에서는 공간데이터의 특성을 고려하여 효율적으로 저장 관리하기 위한 공간 데이터베이스 관리 시스템의 저장관리자인 KORED/StormNT를 제안한다. KORED/StormNT에서는 다양한 크기를 가지는 공간데이터의 특성을 고려하여 디스크 입출력 비용을 최소로 줄일 수 있는 공간데이터 저장기법을 사용하였으며, 공간데이터의 크기에 따른 회복기법을 사용하여 회복비용을 최소화하였다. 또한, 공간죠인(Spatial Join) 연산을 효율적으로 지원하기 위해 별도의 테이블을 이용한 기법을 사용한다.

  • PDF

A Prediction of Crack Propagation Rate under Random Loading (랜덤하중에서의 균열전파속도 추정법에 관한 연구)

  • 표동근;안태환
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.115-123
    • /
    • 1994
  • Under variable amplitude loading conditions, retardation or accelerated condition of fatigue crack growth occurs with every cycle, Because fatigue crack growth behavior varied depend on load time history. The modeling of stress amplitude with storm loading acted to ships and offshore structures applied this paper. The crack closure behavior examine by recording the variation in load-strain relationship. By taking process mentioned above, fatigue crack growth rate, crack length, stress intensity factor, and crack closure stress intensity factor were obtained from the stress cycles of each type of storm ; A(6m), B(7m), C(8m), D(9m), E(11m) and F(15m) which was wave height. It showed that the good agreement with between the experiment results and simulation of storm loads. So this estimated method of crack propagtion rate gives a good criterion for the safe design of vessels and marine structure.

  • PDF