• Title/Summary/Keyword: design low-flow

Search Result 1,011, Processing Time 0.025 seconds

The Study of Numerical Simulation on the Thermal Flow Performance for the Design of Low Emission Stoker Type Municipal Waste Incinerator (저공해 스토커형 도시폐기물 소각로 설계를 위한 열유동 수치해석 연구)

  • 전영남;송형운;김미환
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.543-551
    • /
    • 2002
  • A Numerical simulation on the thermal flow performance was carried out to propose the incinerator type for the domestic refuses and to investigate the design factor and operating conditions. The SSTI(Standard Stoker Type Incinerator) proposed in this study was modified from the type with central f)ow. It has the characteristics of good mixing between refuse and hot combustion gas in primary combustion chamber and between unburned gas inflowing and secondary air jet in secondary chamber. By predictive results, the SSTI was no recirculation zone in secondary chamber so that mixing time was increased with high residence time. It has good characteristics of combustion and low emission. Parametric screening studies have been understood with phenomenon of combustion in incinerator.

CHARACTERISTIC OF BUTTERFLY VALVE FLOW WITH DIFFERENT DESIGN FACTORS (설계인자 변경에 따른 버터플라이 밸브 유동 특성에 관한 연구)

  • Lee, J.W.;Choi, H.K.;Yoo, G.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.170-176
    • /
    • 2009
  • Flow control butterfly valve(FCBV) is known to have difficulty in controlling flow rate along valve opening due to its high flow rate. In low opening condition, the butterfly valve also has some shortcomings such as noise, vibration and erosion which are mostly caused by cavitation effects. Therefore, the FCBV requires proper remedies to reduce cavitation effects and to improve flow control performance. Numerical analysis is applied to FCBV flow to find effects of design factors such as seat diameter and valve opening rate. Cases with 3 different sizes of seat diameter and various valve opening rate are selected for the numerical analysis. From the analysis results, it is found that the FCBV with small seat diameter shows better pressure loss performance and reduced cavitation effects.

  • PDF

CHARACTERISTIC OF BUTTERFLY VALVE FLOW WITH DIFFERENT DESIGN FACTORS (설계인자 변경에 따른 버터플라이 밸브 유동 특성에 관한 연구)

  • Lee, J.W.;Choi, H.K.;Yoo, G.J.
    • Journal of computational fluids engineering
    • /
    • v.15 no.1
    • /
    • pp.64-70
    • /
    • 2010
  • Flow control butterfly valve(FCBV) is known to have difficulty in controlling flow rate along valve opening due to its high flow rate. In low opening condition, the butterfly valve also has some shortcomings such as noise, vibration and erosion which are mostly caused by cavitation effects. Therefore, the FCBV requires proper remedies to reduce cavitation effects and to improve flow control performance. Numerical analysis is applied to FCBV flow to find effects of design factors such as seat diameter and valve opening rate. Cases with 3 different sizes of seat diameter and various valve opening rate are selected for the numerical analysis. From the analysis results, it is found that the FCBV with small seat diameter shows better pressure loss performance and reduced cavitation effects.

Effects of the Floor Pannel on Flows in a Vertical Laminar Flow Type Clean Room (수직 층류형 클린룸의 바닥 패널이 실내기류에 미치는 영향)

  • Kang, S.H.;Jeon, W.P.;Oh, M.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.4
    • /
    • pp.303-315
    • /
    • 1990
  • Uniformity of velocity is quite important design points of a vertical laminar flow type clean room. In the present paper, flows in a room with a bottom pannel are numerically simulated by using a low-Reynolds number $k-{\epsilon}$ model, and a new flow model of the pannel are suggested. Resistance coefficient of the pannel and size of the exhaust channel show considerable effects on flow pattern and uniformity of flow on the bottom. Reflection coefficient also has important roles. A possibility to obtain the uniform and unidirectional flow is tested by adjusting the distribution of resistance coefficient of the pannel. Such a numerical simulation of the flow will be a good method to get optimun design parameters.

  • PDF

Experimental and Numerical Study on the Performance Characteristics of an Open Channel Type Regenerative Pump (개수로형 재생펌프의 성능특성에 관한 실험적 및 수치해석적 연구)

  • Shin, Dong-Yun;Choi, Chang-Ho;Hong, Soon-Sam;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.5
    • /
    • pp.7-14
    • /
    • 2008
  • Open channel type regenerative pump has been used in various industrial fields. It generates high pressure with low flow rate. However, it has low efficiency because of its complex flow pattern, We studied performance experiments and 3D numerical flow analysis of a regenerative pump. Through the numerical analysis, we could get the internal flow pattern and profile of a regenerative pump. Also, we examined leakage flow effects due to the gap between casing and impeller and stripper clearance. For the numerical analysis verification, we performed experiments and they had similar tendency at the design point.

Analysis of Flow Field around Multiple Fluid Spheres in the Low Knudsen Number Region (저 누드센 영역에서 다중 유체구 주위의 유동장 해석)

  • 정창훈;이규원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.733-743
    • /
    • 2003
  • The flow field in multiple fluid sphere systems was studied analytically. The expanded zero vorticity cell model based on Kuwabara's theory (1959) was applied and the effects of gas slippage at the collecting surface were considered. Also, the solid sphere system was extended to fluid sphere including the effects of the induced internal circulation inside the liquid droplet spheres or gas bubble systems. As a result, the obtained analytic solution was converged to the existing solutions for flow field around solid and bubble sphere systems with proper boundary conditions. Based on the resolved flow field, the terminal velocity around the collecting fluid spheres was obtained. Subsequently, this study evaluated the most general solution for flow field around the multiple fluid sphere systems. The obtained flow field in multiple fluid sphere could be used as a fundamental consideration of wet scrubber design and devices for removing particles by fluid-fluid interactions.

Rotating Choke and Choked Surge in an Axial Pump Impeller

  • Watanabe, Toshifumi;Sato, Hideyoshi;Henmi, Yasuhiko;Horiguchi, Hironori;Kawata, Yutaka;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.232-238
    • /
    • 2009
  • Unlike usual turbopump inducers, the axial flow pump tested operates very stably at design flow rate without rotating cavitation nor cavitation surge. Flow visualization suggests that this is because the tip cavity smoothly extends into the flow passage without the interaction with the leading edge of the next blade. However, at low flow rate and low cavitation number, choked surge and rotating choke were observed. Their correlation with the performance curve under cavitation is discussed and their instantaneous flow fields are shown.

An Experimental Study on Flow in the Nozzle of a Radial Turbine (구심터빈의 노즐 내부 유동에 대한 시험 연구)

  • Kang, Jeong-Seek;Lim, Byeung-Jun;Ahn, Iee-Ki
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • Experimental study on the flow field inside the nozzle for radial turbine was performed. At design point, the pressure is high and the Mach number is low at the pressure side of the nozzle inlet semi-vaneless space as the flow turns through the nozzle vanes. As the flow accelerates through the nozzle passage to the throat the pressure level at the pressure and suction sides becomes similar. The flow continued accelerating from the throat to the inlet of turbine wheel and the pressure field became uniform in the circumferential direction in the vaneless space. In high expansion ratio condition, strong favorable pressure gradient band region occurred just after the throat in the semi-vaneless space in the circumferential direction and the pressure became uniform in the circumferential direction after this band. In low expansion ratio condition, core flow acceleration is dominant after the throat and this non-uniform pressure field reached to the inlet of turbine wheel.

The Effect of Mixing Region in Mixed Multiple Serpentine Flow-field to PEMFC Performance (혼합 다채널 사형 유로의 혼합영역이 PEMFC 성능에 미치는 영향)

  • Lee, Ji-Hong;Lee, Myeong-Yong;Kim, Hun-Ju;Lee, Sang-Seok;Lee, Do-Hyung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.4
    • /
    • pp.265-273
    • /
    • 2009
  • Proton Exchange Membrane Fuel Cell (PEMFC) has low operating temperature and high efficiency. And PEMFC consists of many components as bipolar plate, gas diffusion layer, membrane etc.. Flow-field in bipolar plate roles path for transporting reactants to membrane. Therefore a design of flow-field has an effect on PEMFC's performance. In this study, Computational Fluid Dynamics (CFD) simulations were performed for comparing mixed multiple serpentine (MMS) flow-field and multiple serpentine (MS) flow-field. And we studied an effect according to change mixing region design in MMS flow-field. Finally the applicability of results is verified by performing CFD simulation about fixed MMS flow-field which is combined good designs.

Prediction of Aeroacoustics Noise of Pantograph via Low Speed Wind Tunnel Test and Flow Simulation (저속풍동실험 및 유동해석을 통한 고속전철 판토그라프의 유동소음 해석)

  • 조운기;이종수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1207-1214
    • /
    • 2001
  • The paper deals with the computational approach in analysis and design of pantograph panhead strips of high-speed railway in aerodynamic and aeroacoustic concerns. Pantograph is an equipment such that the electric power is supplied from catenary system to train. Due to the nature of complexity in high-speed fluid flow, turbulence and downstream vortices result in the instability in the aerodynamic contact between panhead strips and catenary system, and consequently generate the considerable levels of flow-induced sound. In this paper, based on the preceding low speed wind-tunnel test and simulations, the aerodynamic and aeroacoustic characteristics in low speed are analyzed.

  • PDF