• 제목/요약/키워드: design ground acceleration

Search Result 287, Processing Time 0.022 seconds

Scaling of design earthquake ground motions for tall buildings based on drift and input energy demands

  • Takewaki, I.;Tsujimoto, H.
    • Earthquakes and Structures
    • /
    • v.2 no.2
    • /
    • pp.171-187
    • /
    • 2011
  • Rational scaling of design earthquake ground motions for tall buildings is essential for safer, risk-based design of tall buildings. This paper provides the structural designers with an insight for more rational scaling based on drift and input energy demands. Since a resonant sinusoidal motion can be an approximate critical excitation to elastic and inelastic structures under the constraint of acceleration or velocity power, a resonant sinusoidal motion with variable period and duration is used as an input wave of the near-field and far-field ground motions. This enables one to understand clearly the relation of the intensity normalization index of ground motion (maximum acceleration, maximum velocity, acceleration power, velocity power) with the response performance (peak interstory drift, total input energy). It is proved that, when the maximum ground velocity is adopted as the normalization index, the maximum interstory drift exhibits a stable property irrespective of the number of stories. It is further shown that, when the velocity power is adopted as the normalization index, the total input energy exhibits a stable property irrespective of the number of stories. It is finally concluded that the former property on peak drift can hold for the practical design response spectrum-compatible ground motions.

Design-oriented acceleration response spectrum for ground vibrations caused by collapse of large-scale cooling towers in NPPs

  • Lin, Feng;Jiang, Wenming
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1402-1411
    • /
    • 2018
  • Nuclear-related facilities can be detrimentally affected by ground vibrations due to the collapse of adjacent cooling towers in nuclear power plants. To reduce this hazard risk, a design-oriented acceleration response spectrum (ARS) was proposed to predict the dynamic responses of nuclear-related facilities subjected to ground vibrations. For this purpose, 20 computational cases were performed based on cooling tower-soil numerical models developed in previous studies. This resulted in about 2664 ground vibration records to build a basic database and five complementary databases with consideration of primary factors that influence ground vibrations. Afterwards, these databases were applied to generate the design-oriented ARS using a response spectrum analysis approach. The proposed design-oriented ARS covers a wide range of natural periods up to 6 s and consists of an ascending portion, a plateau, and two connected descending portions. Spectral parameters were formulated based on statistical analysis. The spectrum was verified by comparing the representative acceleration magnitudes obtained from the design-oriented ARS with those from computational cases using cooling tower-soil numerical models with reasonable consistency.

Study on the Improvement of Response Spectrum Analysis of Pile-supported Wharf with Virtual Fixed Point (가상고정점기법이 적용된 잔교식 구조물의 응답스펙트 럼해석법 개선사항 도출 연구)

  • Yun, Jung Won;Han, Jin Tae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.311-322
    • /
    • 2018
  • As a method of seismic-design for pile-supported wharves, equivalent static analysis, response spectrum analysis, and time history analysis method are applied. Among them, the response spectrum analysis is widely used to obtain the maximum response of a structure. Because the ground is not modeled in the response spectrum analysis of pile-supported wharves, the amplified input ground acceleration should be calculated by ground classification or seismic response analysis. However, it is difficult to calculate the input ground acceleration through ground classification because the pile-supported wharf is build on inclined ground, the methods to calculate the input ground acceleration proposed in the standards are different. Therefore, in this study, the dynamic centrifuge model tests and the response spectrum analysis were carried out to calculate the appropriate input ground acceleration. The pile moment in response spectrum analysis and the dynamic centrifuge model tests were compared. As a result of comparison, it was shown that the response spectrum analysis results using the amplified acceleration in the ground surface were appropriate.

Generation of critical and compatible seismic ground acceleration time histories for high-tech facilities

  • Hong, X.J.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.687-707
    • /
    • 2007
  • High-tech facilities engaged in the production of semiconductors and optical microscopes are extremely expensive, which may require time-domain analysis for seismic resistant design in consideration of the most critical directions of seismic ground motions. This paper presents a framework for generating three-dimensional critical seismic ground acceleration time histories compatible with the response spectra specified in seismic design codes. The most critical directions of seismic ground motions associated with the maximum response of a high-tech facility are first identified. A new numerical method is then proposed to derive the power spectrum density functions of ground accelerations which are compatible with the response spectra specified in seismic design codes in critical directions. The ground acceleration time histories for the high-tech facility along the structural axes are generated by applying the spectral representation method to the power spectrum density function matrix and then multiplied by envelope functions to consider nonstationarity of ground motions. The proposed framework is finally applied to a typical three-story high-tech facility, and the numerical results demonstrate the feasibility of the proposed approach.

Acceleration amplification characteristics of embankment reinforced with rubble mound

  • Jung-Won Yun;Jin-Tae Han;Jae-Kwang Ahn
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.157-166
    • /
    • 2024
  • Generally, the rubble mound installed on the slope embankment of the open-type wharf is designed based on the impact of wave force, with no consideration for the impact of seismic force. Therefore, in this study, dynamic centrifuge model test results were analyzed to examine the acceleration amplification of embankment reinforced with rubble mound under seismic conditions. The experimental results show that when rubble mounds were installed on the ground surface of the embankment, acceleration response of embankment decreased by approximately 22%, and imbalance in ground settlement decreased significantly from eight to two times. Furthermore, based on the experimental results, one-dimensional site response (1DSR) analyses were conducted. The analysis results indicated that reinforcing the embankment with rubble mound can decrease the peak ground acceleration (PGA) and short period response (below 0.6 seconds) of the ground surface by approximately 28%. However, no significant impact on the long period response (above 0.6 seconds) was observed. Additionally, in ground with lower relative density, a significant decrease in response and wide range of reduced periods were observed. Considering that the reduced short period range corresponds to the critical periods in the design response spectrum, reinforcing the loose ground with rubble mound can effectively decrease the acceleration response of the ground surface.

Conversion of Recorded Ground Motion to Virtual Ground Motion Compatible to Design Response Spectra (계측 기록의 설계스펙트럼 부합 가상 지진 변환 방법)

  • Ji, Hae Yeon;Choi, Da Seul;Kim, Jung Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.33-42
    • /
    • 2021
  • The design response spectrum presented in the seismic design standard reflects the characteristics of the tectonic environment at a site. However, since the design response spectrum does not represent the ground motion with a specific earthquake magnitude or distance, input ground motions for response history analysis need to be selected reasonably. It is appropriate to use observed ground motions recorded in Korea for the seismic design. However, recently recorded ground motions in the Gyeongju (2016) or Pohang (2017) earthquakes are not compatible with the design response spectrum. Therefore, it is necessary to convert the recorded ground motion in Korea to a model similar to the design response spectrum. In this study, several approaches to adjust the spectral acceleration level at each period range were tested. These are the intrinsic and scattering attenuation considering the earthquake environment, magnitude, distance change by the green function method, and a rupture propagation direction's directivity effect. Using these variables, the amplification ratio for the representative natural period was regressed. Finally, the optimum condition compatible with the design response spectrum was suggested, and the validation was performed by converting the recorded ground motion.

Study on Improvement of Response Spectrum Analysis of Pile-supported Structure: Focusing on the Natural Periods and Input Ground Acceleration (잔교식 구조물의 응답스펙트럼 해석법 개선사항 도출 연구: 고유주기 및 입력지반가속도를 중점으로)

  • Yun, Jung-Won;Han, Jin-Tae;Kim, Jong-Kwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.6
    • /
    • pp.17-34
    • /
    • 2020
  • In response spectrum analysis of pile-supported structure, an amplified seismic wave should be used as the input ground acceleration through the site-response analysis. However, each design standard uses different input ground acceleration criteria, which leads to confusion in determining the appropriate input ground acceleration. In this study, the ground accelerations were calculated through dynamic centrifuge model test, and the response spectrum analysis was performed using the calculated ground acceleration. Then, the moments derived from the test and analysis were compared, and a method for determining the appropriate input ground acceleration in response spectrum analysis was presented. Comparison of the experimental and simulated results reveals that modeling of the ground using elastic springs allows proper simulation of the natural period of the structure, and the use of a seismic wave that is amplified at the ground surface as the input ground acceleration provided the most accurate results for the response analysis of pile-supported structures in sands.

Selecting and scaling ground motion time histories according to Eurocode 8 and ASCE 7-05

  • Ergun, Mustafa;Ates, Sevket
    • Earthquakes and Structures
    • /
    • v.5 no.2
    • /
    • pp.129-142
    • /
    • 2013
  • Linear and nonlinear time history analyses have been becoming more common in seismic analysis and design of structures with advances in computer technology and earthquake engineering. One of the most important issues for such analyses is the selection of appropriate acceleration time histories and matching these histories to a code design acceleration spectrum. In literature, there are three sources of acceleration time histories: artificial records, synthetic records obtained from seismological models and accelerograms recorded in real earthquakes. Because of the increase of the number of strong ground motion database, using and scaling real earthquake records for seismic analysis has been becoming one of the most popular research issues in earthquake engineering. In general, two methods are used for scaling actual earthquake records: scaling in time domain and frequency domain. The objective of this study is twofold: the first is to discuss and summarize basic methodologies and criteria for selecting and scaling ground motion time histories. The second is to analyze scaling results of time domain method according to ASCE 7-05 and Eurocode 8 (1998-1:2004) criteria. Differences between time domain method and frequency domain method are mentioned briefly. The time domain scaling procedure is utilized to scale the available real records obtained from near fault motions and far fault motions to match the proposed elastic design acceleration spectrum given in the Eurocode 8. Why the time domain method is preferred in this study is stated. The best fitted ground motion time histories are selected and these histories are analyzed according to Eurocode 8 (1998-1:2004) and ASCE 7-05 criteria. Also, characteristics of both near fault ground motions and far fault ground motions are presented by the help of figures. Hence, we can compare the effects of near fault ground motions on structures with far fault ground motions' effects.

Prediction of Peak Ground Acceleration Generated from the 2017 Pohang Earthquake (2017년 포항지진으로 인하여 발생된 최대지반가속도 (PGA)예측)

  • Jee, Hyun Woo;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.211-217
    • /
    • 2018
  • The Pohang earthquake with a magnitude of 5.4 occurred on November 15, 2018. The epicenter of this earthquake located in south-east region of the Korean peninsula. Since instrumental recording for earthquake ground motions started in Korea, this earthquake caused the largest economic and life losses among past earthquakes. Korea is located in low-to moderate seismic region, so that strong motion records are very limited. Therefore, ground motions recorded during the Pohang earthquake could have valuable geological and seismological information, which are important inputs for seismic design. In this study, ground motions associated by the 2018 Pohang earthquake are generated using the point source model considering domestic geological parameters (magnitude, hypocentral distance, distance-frequency dependent decay parameter, stress drop) and site amplification calculated from ground motion data at each stations. A contour map for peak ground acceleration is constructed for ground motions generated by the Pohang earthquake using the proposed model.

A Study on the Applicability of Amplification Factor to Estimate Peak Ground Acceleration of Pohang Area (국내 내진설계기준의 지반증폭계수를 활용한 포항지역의 지표면 최대가속도 산출 적절성 검토)

  • Kim, Jongkwan;Han, Jin-Tae;Kwak, Tae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.21-33
    • /
    • 2020
  • Ground response analysis has been conducted for each borehole data in Pohang area, using 1D equivalent linear method program, to investigate the applicability of amplification factor to estimate peak ground acceleration. Earthquake motions for ground response analysis were prepared by matching response spectrums for return period of 500, 1000, and 2400 years suggested by seismic design code (MOIS, 2017). Ground survey data were acquired from Geotechnical Information DB System. It has been confirmed that response spectrum obtained from ground response analysis showed good agreement with those from seismic design code irrespective of ground classification. However, PGA (Peak Ground Accelerations) of ground response analysis did not coincide with PGA calculated using amplification factor suggested by seismic design code.