• Title/Summary/Keyword: design gap

Search Result 1,868, Processing Time 0.03 seconds

Development of a Simplified Fuel-Cladding Gap Conductance Model for Nuclear Feedback Calculation in 16$\times$16 FA

  • Yoo, Jong-Sung;Park, Chan-Oh;Park, Yong-Soo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.636-643
    • /
    • 1995
  • The accurate determination of the fuel-cladding gap conductance as functions of rod burnup and power level may be a key to the design and safety analysis of a reactor. The incorporation of a sophisticated gap conductance model into nuclear design code for computing thermal hydraulic feedback effect has not been implemented mainly because of computational inefficiency due to complicated behavior of gap conductance. To avoid the time-consuming iteration scheme, simplification of the gap conductance model is done for the current design model. The simplified model considers only the heat conductance contribution to the gap conductance. The simplification is made possible by direct consideration of the gas conductivity depending on the composition of constituent gases in the gap and the fuel-cladding gap size from computer simulation of representative power histories. The simplified gap conductance model is applied to the various fuel power histories and the predicted gap conductances are found to agree well with the results of the design model.

  • PDF

Tolerance Design for Parts of a Sliding-Type Mobile Phone to Improve Variational Quality of Its Side Gap (슬라이드형 휴대전화기 측면 갭의 품질개선을 위한 부품 공차설계)

  • Lee, Rae Woo;Chung, Haseung;Jee, Haeseong;Yim, Hyunjune
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.6
    • /
    • pp.398-408
    • /
    • 2012
  • This paper investigates the tolerance stack-up in a commercial sliding-type mobile phone model developed by a Korean electronics company, with focus on the dimensional quality of the gap between the sliding top and the main body. The tolerance analysis in this study is done using a commercial software package, which runs Monte Carlo simulations to produce the statistical distributions of the gap size at desired locations. Such an analysis revealed that the original design did not yield the desired dimensional quality of the gap. Through a series of systematic analyses and syntheses, an improved design is proposed for the nominal dimensions and tolerances of selected features of the parts. The proposed design was validated, through tolerance analysis simulation, to meet the desired requirement of the gap quality.

Tolerance Analysis and Design of Refrigerator Door System for Functional and Aesthetic Quality of Gap and Flush (갭과 단차의 기능 및 심미적 품질을 고려한 냉장고 도어 시스템의 공차해석 및 설계)

  • Kim, Jinsu;Kim, Jae-Sung;Yim, Hyunjune
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.59-66
    • /
    • 2014
  • The central seam, the vertical 'line' between doors, in the front view of a refrigerator must have its gap and flush within certain ranges to meet functional and aesthetic requirements. The conventional criteria for gap and flush control in the industry are to keep the gap and flush within certain ranges at each of various points along the seam. For aesthetics, however, the uniformity of the gap is also as important because a 'tapered' seam is negatively perceived by human eyes. This paper shows a case study of tolerance design for a refrigerator door system. It presents a step-by-step procedure, which consists of datum flow chain analysis, identification of assembly features, computer modeling of feature tolerances, assembly operations and measurements, tolerance simulation, and tolerance adjustments based on the simulation results. It is found that extra care may need to be used to satisfy the aesthetical criterion for gap uniformity.

Design Methodology of Gap Slab for Post-Tensioned Prestressed Concrete Pavement (포스트텐션 콘크리트 포장의 Gap Slab 설계 방안)

  • Park, Hee-Beom;Kim, Seong-Min;Shim, Jae-Soo
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.137-146
    • /
    • 2010
  • This study was conducted to develop the design methodology of gap slabs for the post-tensioned concrete pavement (PTCP). The gap slabs were considered as unbonded, half bonded, and bonded types. According to the types of the gap slabs, the curling stresses were investigated first under the environmental loads. The stresses due to the vehicle loads were analyzed considering both the single and tandem axles. The method to calculate the prestressing amount was suggested by comparing the combined stresses due to both loads and the allowable tensile stress of concrete. The prestressing amount for the unbonded type gap slab could be designed by considering only the gap slab; however, for the half bonded and bonded gap slabs, the whole PTCP slab should be analyzed to properly design the prestressing amount.

Random Forest Model for Silicon-to-SPICE Gap and FinFET Design Attribute Identification

  • Won, Hyosig;Shimazu, Katsuhiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.5
    • /
    • pp.358-365
    • /
    • 2016
  • We propose a novel application of random forest, a machine learning-based general classification algorithm, to analyze the influence of design attributes on the silicon-to-SPICE (S2S) gap. To improve modeling accuracy, we introduce magnification of learning data as well as randomization for the counting of design attributes to be used for each tree in the forest. From the automatically generated decision trees, we can extract the so-called importance and impact indices, which identify the most significant design attributes determining the S2S gap. We apply the proposed method to actual silicon data, and observe that the identified design attributes show a clear trend in the S2S gap. We finally unveil 10nm key fin-shaped field effect transistor (FinFET) structures that result in a large S2S gap using the measurement data from 10nm test vehicles specialized for model-hardware correlation.

Response Surface Methodology based on the D-optimal Design for Cell Gap Characteristic for Flexible Liquid Crystal Display (D-optimal Design을 이용한 Flexible 액정 디스플레이용 셀 갭 특성에 대한 반응 표면 분석)

  • Ko, Young-Don;Hwang, Jeoung-Yeon;Seo, Dae-Shik;Yun, Il-Gu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.510-513
    • /
    • 2004
  • This paper represents the response surface model for the cell gap on the flexible liquid crystal display (LCD) process. Using response surface methodology (RSM). D-optimal design is carried out to build the design space and the cell gap is characterized by the quadratic model. The statistical analysis is used to verify the response surface model. This modeling technique can predict the characteristics of the desired response, cell gap, varying with process conditions.

  • PDF

A Study on Output and Design of Permanent Magnet Synchronous Motor with Dual-gap (300W급 이중 공극 구조 PMSM 설계 및 출력 특성에 관한 연구)

  • Kim, Seung-Joo;Kim, Youn-Hwan;Choi, Han-Suk;Moon, Jae-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.4
    • /
    • pp.80-87
    • /
    • 2014
  • This paper suggests the dual-gap for generating power and increasing the torque of a direct-drive permanent magnet synchronous motor in a hybrid-cycle. To consider easy coil winding, we applied a structure of dual-gap for the permanent magnet synchronous motor (PMSM). Because the torque of PMSM with the dual-gap is very large, we are designed the appropriate specifications of the PMSM by selected the appropriate dual-gap slot and poles combination. The prototype model is selected by design theory for increasing torque and maximizing output power of PMSM. And the detailed structure design of the model was designed by the loading distribution method. The PMSM models were analyzed by finite element method. Finally, we have suggested appropriate rotor structure has benefit to further increasing torque and prevent decreasing of the output power in PMSM with dual-gap.

A Strategy of a Gap Block Design in the CFRP Double Roller to Minimize Defects during the Product Conveyance (제품 이송 시 결함 최소화를 위한 CFRP 이중 롤러의 Gap block 설계 전략)

  • Seung-Ji Yang;Young-june Park;Sung-Eun Kim;Jun-Geol Ahn;Hyun-Ik Yang
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.7-14
    • /
    • 2024
  • Due to the structural characteristic of a double roller, the double roller can have various deformation behaviors depending on a gap block design, even if dimensions and loading conditions for the double roller are the same. Based on this feature, we propose a strategy for designing the gap block of the carbon-fiber reinforced plastic (CFRP) double roller to minimize defects (e.g., sagging and wrinkling), which can be raised during the product conveying process, with the pursue of the lightweight design. In the suggested strategy, analysis cases are first selected by considering main design parameters and engineering tolerances of the gap block, and then deformation behaviors of these selected cases are extracted using the finite element method (FEM). Here, to obtain the optimal gap block parameters that satisfy the purpose of this study, deformation deviations in the contact area are calculated and compared using the extracted deformation behaviors. Note that the contact area in this work is located between the product and the roller. As a result, through the design method of the gap block proposed in this work, it is possible to construct the CFRP double roller that can significantly decrease the defects without changing the overall sizes of the roller. A detailed method is suggested herein, and the results are evaluated in a numerical way.

Design of Genetic Algorithm Processor(GAP) for Evolvable Hardware (진화하드웨어를 위한 유전자 알고리즘 프로세서(GAP) 설계)

  • Sim, Kwee-Bo;Kim, Tae-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.462-466
    • /
    • 2002
  • Genetic Algorithm (GA) which imitates the process of nature evolution is applied to various fields because it is simple to theory and easy to application. Recently applying GA to hardware, it is to proceed the research of Evolvable Hardware(EHW) developing the structure of hardware and reconstructing it. And it is growing a necessity of GAP that embodies the computation of GA to the hardware. Evolving by GA don't act in the software but in the hardware(GAP) will be necessary for the design of independent EHW. This paper shows the design GAP for fast reconfiguration of EHW.

Robust Design of Air Compressor-Driving Quadratic Linear Actuator in Fuel Cell BOP System using Taguchi Method

  • Kim, Jae-Hee;Kim, Jun-Hyung;Kim, Jin-Ho
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.275-279
    • /
    • 2012
  • The linear actuator has the inherent drawback of air gap variation because its linear motion is usually guided by the springs, which destabilizes the dynamic performance. In order to design the linear actuator to be insensitive to air gap, this paper describes the robust design of the air compressor driving linear actuator using Taguchi method. The orthogonal arrays are constructed with selected control factors and noise factor for minimum experiment. The control factors are thickness of inner magnet, height of upper yoke, thickness of outer magnet and thickness of lower yoke while noise factor is airgap. The finite element analysis using commercial electromagnetic analysis program "MAXWELL" are performed instead of experiment. ANOVA are performed to investigate the effects of design factors. In result, the optimal robust linear actuator which is insensitive to air gap variation is designed.