• Title/Summary/Keyword: design framework

Search Result 3,376, Processing Time 0.04 seconds

FEED Framework Development for Designing Supercritical Carbon Dioxide Power Generation System (초임계 이산화탄소 발전시스템 설계를 위한 FEED(Front End Engineering Design) 프레임워크 개발)

  • Kim, Joon-Young;Cha, Jae-Min;Park, Sungho;Yeom, Choongsub
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.65-74
    • /
    • 2017
  • Supercritical carbon dioxide power system is the next generation electricity technology expected to be highly developed. The power system can improve net efficiency, simplify cycle configuration, and downsize equipment compared to conventional steam power system. In order to dominate the new market in advance, it is required to found Front End Engineering Design (FEED) Framework of the system. Therefore, this study developed the FEED framework including design processes for the supercritical carbon dioxide power system, information elements for each process, and relationships for each element. The developed FEED framework is expected to be able to secure systematic technological capabilities by establishing a common understanding and perspective among multi-field engineers participating in the design.

The effect of zirconia framework design on the failure of all-ceramic crown under static loading

  • Urapepon, Somchai;Taenguthai, Pakamard
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.146-150
    • /
    • 2015
  • PURPOSE. This in vitro study aimed to compare the failure load and failure characteristics of two different zirconia framework designs of premolar crowns when subjected to static loading. MATERIALS AND METHODS. Two types of zirconia frameworks, conventional 0.5 mm even thickness framework design (EV) and 0.8 mm cutback of full contour crown anatomy design (CB), were made for 10 samples each. The veneer porcelain was added on under polycarbonate shell crown made by vacuum of full contour crown to obtain the same total thickness of the experiment crowns. The crowns were cemented onto the Cobalt-Chromium die. The dies were tilted 45 degrees from the vertical plane to obtain the shear force to the cusp when loading. All crowns were loaded at the lingual incline of the buccal cusp until fracture using a universal testing machine with cross-head speed 0.5 mm/min. The load to fracture values (N) was recorded and statistically analyzed by independent sample t-test. RESULTS. The mean and standard deviations of the failure load were $1,170.1{\pm}90.9$ N for EV design and $1,450.4{\pm}175.7$ N for CB design. A significant difference in the compressive failure load was found (P<.05). For the failure characteristic, the EV design was found only cohesive failures within veneering porcelain, while the CB design found more failures through the zirconia framework (8 from 10 samples). CONCLUSION. There was a significant difference in the failure load between two designs, and the design of the framework influences failure characteristic of zirconia crown.

Development of a Design Framework for Simulation Based Shipyard Layout (시뮬레이션 기반 조선소 레이아웃 설계 프레임워크 개발)

  • Song, Young-Joo;Lee, Kwang-Kook;Lee, Dong-Kun;Hwang, In-Hyuck;Woo, Jong-Hun;Shin, Jong-Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.202-212
    • /
    • 2008
  • In recent days, global shipbuilding companies have been increasing their productivity or expanding their shipyards for a large amount of orders. Though, few researches about the shipyard layout designs have been studied. This research presents a simulation-based shipyard layout design framework to resolve the problems of the shipyard layout design. The shipyard layout design framework was developed on the basis of systems engineering method. The disciplined system engineering technique was guided by ISO/IEC 15288 during the planning phase of the shipyard layout design framework development. This framework suggests that how efficient and effective shipyard layout design could be got, that can satisfy the stakeholder of the layout. Furthermore, it is recommended that how the proposed shipyard layout should be verified and validated by digital simulation model. It is expected that the framework will contribute to not only the improvement of the existing shipyard but also the construction of the new shipyard.

Testing of Interaction Patterns for Hot Spots in an Object-oriented Framework (객체 지향 프레임웍의 가변부위에 대한 상호작용 패턴의 테스트 방법)

  • Roh, Sung-Hwan;Jeon, Tae-Woong
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.7
    • /
    • pp.592-600
    • /
    • 2005
  • Systematically extracting the test patterns of hot spots in an object-oriented software framework is a prerequisite for thoroughly testing the framework's functionality in a variety of contexts in which the framework is extended for reuse. This paper proposes a method for analyzing the design patterns and extracting the test patterns from the interaction test patterns of hot spots in an object-oriented framework. Based on the design pattern of the framework's hot spot, our method captures the object behavior allowed in that hot spot by means of statecharts, which are then used to generate the interaction test patterns and test cases. The generated test patterns and test cases can be applied repeatedly to applications which are built from extending the framework.

Elements and Structure of the Smart Lighting Design in the Office

  • Yang, Hyejin;Pan, Younghwan
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.29-38
    • /
    • 2016
  • Objective: The purpose of this research is to extract factors affecting office lighting and their relations, and then develop a framework that helps designers research and design smart lighting systems. Background: Due to the highly specialized usages of offices, the lighting system within offices also varies according to space, work, user, etc. A framework which considers these various factors and their relations is necessary for understanding and developing smart lighting systems. Method: First we extract factors affecting office lighting conditions, and select factors that can be controlled. We then analyze and develop a structure which reflects the relations among these factors from procedural perspective. Results: We divide factors affecting office lighting into physical and social factors, and then conceptualize their relations using a circular model. We then develop our framework from procedural perspective by dividing these factors into three levels, namely Subject, Action and Object. Conclusion: The developed framework organizes various factors affecting office lighting and their relations, and helps understand the procedural and structural aspects of lighting system. Application: Our framework helps designing and refining smart lighting system for complicated office spaces by helping people understanding the overall structure of office lighting.

A Framework to Automate Reliability-based Structural Optimization based on Visual Programming and OpenSees

  • Lin, Jia-Rui;Xiao, Jian;Zhang, Yi
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.225-234
    • /
    • 2020
  • Reliability-based structural optimization usually requires designers or engineers model different designs manually, which is considered very time consuming and all possibilities cannot be fully explored. Otherwise, a lot of time are needed for designers or engineers to learn mathematical modeling and programming skills. Therefore, a framework that integrates generative design, structural simulation and reliability theory is proposed. With the proposed framework, various designs are generated based on a set of rules and parameters defined based on visual programming, and their structural performance are simulated by OpenSees. Then, reliability of each design is evaluated based on the simulation results, and an optimal design can be found. The proposed framework and prototype are tested in the optimization of a steel frame structure, and results illustrate that generative design based on visual programming is user friendly and different design possibilities can be explored in an efficient way. It is also reported that structural reliability can be assessed in an automatic way by integrating Dynamo and OpenSees. This research contributes to the body of knowledge by providing a novel framework for automatic reliability evaluation and structural optimization.

  • PDF

A Study on Analysis Process of Customer Requirements and Functional Requirements for a Ship Production Simulations (조선해양 생산 시뮬레이션 요구 및 기능 분석 프로세스 연구)

  • Hwang, Ho-Jin
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.6
    • /
    • pp.449-457
    • /
    • 2011
  • The productivity improvement is indispensible to shipbuilding industry for maintaining the world's No. 1. Simulation based production recently has been an issue as prat of efforts to high efficiency production and Korean shipyards requests simulation system tools specialized in a shipbuilding industry. IT convergence project between conventional shipbuilding industry and IT simulation technology has been carried out and integrated simulation framework was proposed as a way to overcome sporadic developments. The framework would provide reusability of kernels and modules and also ensure for expansibilities to other production simulations. The fact that production simulation system should reflect shipyard requirement would be most important. We suggest an analysis process of customer requirements and functional requirements for production simulations. It is partially based on concepts of software engineering and axiomatic design. The process is applied to a design of configuration for simulation framework.

Missile Configuration Design and Optimization Using MDO Framework (MDO 프레임워크를 이용한 유도무기 최적 형상 설계)

  • Lee Seung-Jin;Kim Woo-Hyun;Lee Jae-Woo;Lee Chang-Hyuk;Kim Sang-Ho;Hwang Sung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.343-346
    • /
    • 2006
  • In this study, optimization process is constructed for developing missile MDO framework. The analysis tools which are integrated in the missile MDO framework and data flow between analysis tools are investigated. Using analyzed results, the optimal design scenario is constructed. Then to verify optimal design scenario, missile design problem is made and performed.

  • PDF

Development of a Comprehensive Usability Testing and Analysis Framework for the Physical Interface Between Product and User

  • Lee, Won-Sup;Jung, Ki-Hyo;Lee, Hyun-Ju;Song, Hwag-Yu;Oh, Jang-Keun;You, Hee-Cheon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.331-338
    • /
    • 2011
  • Objective: The present study developed a comprehensive usability testing and analysis framework based on a physical interface model of product and user and applied the proposed framework to usability testing of canister-type vacuum cleaner. Background: The development of a user-centered product design is important to satisfy customers who want to use the product with ease of use and to keep the manufacturer competitive in the market. Method: The proposed testing and analysis framework consists of (1) characterization of physical product-user interface, (2) preparation and administration of usability testing questionnaire, and (3) analysis and interpretation of usability testing results. A usability evaluation of five vacuum cleaners was planned and administered based on the proposed framework and its analysis produced detailed and overall usability testing results for various aspects such as tasks, usability criteria, and design components. Results: The testing results were further utilized to identify usability problems and preferred design features of the vacuum cleaners. Conclusion: The proposed usability testing and analysis framework was found effective to identify preferred features and problems of a product design in a systematic, holistic manner. Application: The proposed framework can be of effective use for practitioners of product design and development to obtain comprehensive, quantitative usability testing information in a systematic manner.