• Title/Summary/Keyword: design direction

Search Result 5,034, Processing Time 0.039 seconds

Analysis of the RF Link Design for ETCS and Study on the Communication Zone by the Antenna Beam Pattern (ETCS용 RF 링크 설계와 안테나 빔 패턴에 의한 통신 영역 연구)

  • Yim Choon-Sik;Ha Jae-Kwon;Ahn Dong-Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.1 s.4
    • /
    • pp.21-30
    • /
    • 2004
  • This paper describes the design of RF link between RSE and OBU of ETCS and the analysis of the antenna beam pattern to get a proper communication area in the cross direction and traveling direction of lanes. This stage should be performed prior to determination of system requirements of ITS service based on active DSRC. This study is important and fundamental technical analysis to design and implement base station of ETCS.

  • PDF

Numerical optimization design by computational fluid dynamics (전산유체역학을 이용한 수치 최적설계)

  • Lee, Jeong-U;Mun, Yeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2347-2355
    • /
    • 1996
  • Purpose of the present study is to develop a computational design program for shape optimization, combining the numerical optimization technique with the flow analysis code. The present methodology is then validated in three cases of aerodynamic shape optimization. In the numerical optimization, a feasible direction optimization algorithm and shape functions are considered. In the flow analysis, the Navier-Stokes equations are discretized by a cell-centered finite volume method, and Roe's flux difference splitting TVD scheme and ADI method are used. The developed design code is applied to a transonic channel flow over a bump, and an external flow over a NACA0012 airfoil to minimize the wave drag induced by shock waves. Also a separated subsonic flow over a NACA0024 airfoil is considered to determine a maximum allowable thickness of the airfoil without separation.

Experimental Study on Force and Yaw Moment Acting on Ship in Regular Wave with Various Wave Direction

  • Nguyen, Van-Minh;Yoon, Hyeon-Kyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.19-21
    • /
    • 2017
  • Ship maneuvering performance is usually estimated in calm water conditions which provide valuable information about the ship maneuvering characteristics at the early design stage. However, the course-keeping ability and the maneuvering performance of a ship can be significantly affected by the presence of waves when ship maneuvers in real sea condition. Therefore, it is necessary to understand the maneuvering behavior of a ship in waves in the viewpoint of ship safety in the design stage. In this study, the force and yaw moment acting on a moving ship in regular waves with different wave length and wave direction will be performed in the square wave tank in Changwon National University. The results of this study can be used to help a person to design a ship hull with the best ship maneuverability in waves and disseminate knowledge on predicting ship maneuvering in regular waves in various wave directions.

  • PDF

A Study of the Narrative Curriculum Design based on Social Practices-based Education (실천전통 교육관에 근거한 내러티브 교육과정 설계의 가능성 탐색)

  • Oh, Seung-Min;Kang, Hyeon-Suk
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.6
    • /
    • pp.1366-1380
    • /
    • 2013
  • This study aims to explore the direction of design for narrative curriculum of 'The social practices-based education'. In chapter 2, this study addresses the theoretical criteria for social practices, social practices-based education and narrative curriculum and identifies their characteristics. In chapter 3, the association between social practices and narrative curriculum is identified through a study on the relation between social practices and narrative curriculum. In chapter 4, this study investigates the 5 steps of designing narrative curriculum's templet proposed by C. Lauritzen and M. Jaeger (1997), based on which this study intends to explore the direction of design for narrative curriculum.

Topology optimal design of magnetic recording system (자기기록장치의 위상최적설계)

  • Park, Soon-Ok;Choi, Jae-Seok;Yoo, Jeong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.618-621
    • /
    • 2008
  • The magnetic recording system shows the difference of the magnetic recording density according to the direction of the magnetic field. The yoke shape of the recording system affects the magnetic field direction; therefore, the recording density may be raised by changing the shape. This paper intends not only to increase the magnetic flux density of the record region but also to reduce the recording loss of a specific region through the simultaneous design of the yoke and the magnet. The recording loss can be reduced by minimizing the magnetic flux of the adjacent area to the recording region. The topology optimization method is used to obtain the optimal shape both of the yoke and the magnet. And the commercial package, Maxwell is used to verify the result.

  • PDF

A Design Method for Direction Selective Structural-acoustic Coupled Radiator (구조-음향 연성현상을 갖는 방사 방향을 가질 수 있는 방사체 설계방법)

  • Seo, Hee-Seon;Kim, Yang-Hann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.225-231
    • /
    • 2005
  • This paper presents a design method for the structural-acoustic coupled radiator that can emit sound in the desired direction. A coupled system that has a finite space and a semi-infinite space separated by two flexible walls and an opening is considered. An objective function is selected to maximize radiation power on a main axis and minimize a side lobe level. To get initial values, prediction of a pressure distribution on field points and radiation pattern of the structural-acoustic coupling system is shown at a coupled-resonant frequency. Three different optimization methods are adapted to design the coupled radiator. Pressure and intensity distribution of the designed radiator is presented.

Topology Optimization of an Electromagnetic Coupler Considering Force Direction (힘의 방향성을 고려한 전자기 커플러의 위상 최적화)

  • Yang, Seung-Jin;Yoo, Jeong-Hoon
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.4
    • /
    • pp.230-235
    • /
    • 2006
  • The machine locking system is an important device for the safety of persons using the machine. In this study, a locking system using electromagnetic fields is proposed to decrease the defects and the cost for repairing and maintenance of the existing locking system using structural mechanism. We analyze the electromagnetic locking system and calculate the generated force considering direction by the finite element method. Also, we set up two design domains for the topology optimization; first domain is optimized to reduce the volume and the other is optimized to maximize the generated force keeping the volume, especially. The optimal design is obtained by integration of the two optimized results. An improved design is obtained by the optimal topology and it is confirmed by comparison with the initial locking system.

  • PDF

Design Study of 3 Segment Leg with Stable Region at low and high Speed Running (저속 및 고속주행에서 안정영역을 갖는 3 Segment Leg 설계 연구)

  • Kwon, Oh-Seok;Lee, Dong-Ha
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.230-236
    • /
    • 2011
  • In previous researches, the self-stability was studied for the spring-mass model and the two segment leg model. In these researches, it was presented that the spring-mass model has the self-stable region at relatively high speed running and the two segment leg model has the self-stable region at relatively low speed running. If the model was run in the self-stable region, the cost of transport is zero ideally. That is, actually, only the energy loss is needed to compensate for running. This means that the energy efficiency is high, running in the self-stable region. We want to have high energy efficiency at low and high speed running. So, in this paper, we propose the design direction of the three segment leg having the self-stable region at low and high speed running. And we prove the self-stable region of the three segment leg designed by the proposed design direction.

Application Status of Domestic Architectural Industry of Open BIM and Development Direction (국내 건설산업의 개방형 BIM 적용 현황 및 발전 방향(설계사무소를 중심으로))

  • Choi, Jung-Sik;Kim, In-Han;Jo, Chan-Won;Choi, Joong-Hyun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.6
    • /
    • pp.355-363
    • /
    • 2009
  • The purpose of this study is to suggest development direction of open BIM. To achieve this purpose, the authors have investigated application status and current problems of open BIM through question survey to design firm which is introducing or plan BIM. In addition, the authors have suggested improvement way about current problems of BIM application such as BIM standard guide, reference of practical application examples, BIM library, data interoperability between software, improvement of BIM software function and performance that is deducted through question survey.

Friction and Wear Simulation of Suspended Silicon Asperity Moving over a Plate at Microscale

  • Cho, Sung-San;Kim, Jung-Soo;Park, Seung-Ho
    • International Journal of Safety
    • /
    • v.5 no.1
    • /
    • pp.10-16
    • /
    • 2006
  • A suspended hemispherical silicon asperity moving over a silicon plate was simulated. The simulation results on friction and wear in the interface between the two can help obtain more durable miscroscale structures. Silicon structures were constructed with Tersoff three-body potential. Dependence of friction and wear of the asperity on both the atomic arrangement in the plate and the moving direction was investigated under the condition that the asperity is subject to the attractive normal force due to the plate. The results show that the variation of friction force with the movement of asperity, and the occurrence of adhesive wear are attributed to the formation and rupture of asperity, junction between the asperity and the plate. The friction force and wear are smaller when the asperity is incommensurate with the plate, and they also depend on the moving direction of the asperity over the plate.