• Title/Summary/Keyword: design criterion

Search Result 1,385, Processing Time 0.031 seconds

Design of optimum criterion for opportunistic multi-hop routing in cognitive radio networks

  • Yousofi, Ahmad;Sabaei, Masoud;Hosseinzadeh, Mehdi
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.613-623
    • /
    • 2018
  • The instability of operational channels on cognitive radio networks (CRNs), which is due to the stochastic behavior of primary users (PUs), has increased the complexity of the design of the optimal routing criterion (ORC) in CRNs. The exploitation of available opportunities in CRNs, such as the channel diversity, as well as alternative routes provided by the intermediate nodes belonging to routes (internal backup routes) in the route-cost (or weight) determination, complicate the ORC design. In this paper, to cover the channel diversity, the CRN is modeled as a multigraph in which the weight of each edge is determined according to the behavior of PU senders and the protection of PU receivers. Then, an ORC for CRNs, which is referred to as the stability probability of communication between the source node and the destination node (SPC_SD), is proposed. SPC_SD, which is based on the obtained model, internal backup routes, and probability theory, calculates the precise probability of communication stability between the source and destination. The performance evaluation is conducted using simulations, and the results show that the end-to-end performance improved significantly.

Computational enhancement to the augmented lagrange multiplier method for the constrained nonlinear optimization problems (구속조건식이 있는 비선형 최적화 문제를 위한 ALM방법의 성능향상)

  • 김민수;김한성;최동훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.544-556
    • /
    • 1991
  • The optimization of many engineering design problems requires a nonlinear programming algorithm that is robust and efficient. A general-purpose nonlinear optimization program IDOL (Interactive Design Optimization Library) is developed based on the Augmented Lagrange Mulitiplier (ALM) method. The ideas of selecting a good initial design point, using resonable initial values for Lagrange multipliers, constraints scaling, descent vector restarting, and dynamic stopping criterion are employed for computational enhancement to the ALM method. A descent vector is determined by using the Broydon-Fletcher-Goldfarb-Shanno (BFGS) method. For line search, the Incremental-Search method is first used to find bounds on the solution, then the bounds are reduced by the Golden Section method, and finally a cubic polynomial approximation technique is applied to locate the next design point. Seven typical test problems are solved to show IDOL efficient and robust.

A Study on the Ventilation in a Long Road Tunnel (종류식 도로터널내에서의 환기 거동에 관한 연구)

  • Yang, Pan-Seok;Cho, Young-Jin;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1091-1100
    • /
    • 1998
  • Longitudinal distributions of the extinction coefficient and concentrations of hazardous gases in a long tunnel located in urban area haute been predicted theoretically. The results are compared with design criteria. It is found that the maximum concentrations of both CO and $NO_X$ in the tunnel are lower than the design criteria. However, the maximum extinction coefficient, generally considered to be a governing factor for ventilating flow rate, is shown lower than the design criterion. Therefore, it is suggested that the design criterion of the extinction coefficient should be increased to a slightly larger value.

A Case on Excavation Plan and Design of Adjacent Railroad Tunnel (근접 철도터널의 굴착계획 및 설계 사례)

  • 김선홍;정동호;석진호;정건웅;서성호
    • Explosives and Blasting
    • /
    • v.20 no.3
    • /
    • pp.59-71
    • /
    • 2002
  • The points of this design case are the planning and excavation method of a new double-tracked railroad tunnel which is approx. 11∼22 meters apart from existing single-tracked railroad tunnel. For the optimum excavation method some needs are required in design stage, such as the reduction of noise and vibration, public resentment, damage of buildings and construction costs. Hence the estimation and application of allowable noise and vibration criterion is important. The ground coefficient (K, n) of this site is determined by field trial blasting. The excavation method is chosen to satisfy the allowable noise and vibration criterion. In addition, in order to ensure the stability of existing single-tracked railroad tunnel, the instrumentation of maintenance level is accompanied during the construction stage. As a result of this design condition, central diaphragm excavation with line drilling and pre-large hole boring blasting is applied to the area within 15 meters apart from existing tunnel. And above 15 meters apart, pre-large hole boring blasting is designed.

A Study on Design Criteria of Piping System in Petrochemical Plant (석유화학 플랜트의 배관계 설계기준에 대한 연구)

  • Min, Sun-Kuo;Choi, Myung-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.192-199
    • /
    • 2002
  • Largely, there are three kinds of the design criteria of piping system in petrochemical plant. The first is on the pipe thickness in accordance with the design pressure of piping system. The second is on the static state evaluation by thermal growth and the other is on the dynamic evaluation by piping vibration. According to the ASME B31.3 code, the internal pressure design thickness fur straight pipe shall be calculated as a code formula. And the static design by thermal displacement is defined 7000 cycles of fatigue life in operating the piping system with a design condition. However, the dynamic design evaluation in comparative with small displacements of high frequencies to the static condition has not established clearly the method, yet. So, this study purposes to present the trial of a proposal of dynamic design criterion on the basis of static design method.

Stacking Sequence Design of Fiber-Metal Laminate Composites for Maximum Strength (강도를 고려한 섬유-금속 적층 복합재료의 최적설계)

  • 남현욱;박지훈;황운봉;김광수;한경섭
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.42-54
    • /
    • 1999
  • FMLC(Fiber-Metal Laminate Composites) is a new structural material combining thin metal laminate with adhesive fiber prepreg, it nearly include all the advantage of metallic materials, for example: good plasticity, impact resistance, processibility, light weight and excellent fatigue properties. This research studied the optimum design of the FMLC subject to various loading conditions using genetic algorithm. The finite element method based on the shear deformation theory was used for the analysis of FMLC. Tasi-Hill failure criterion and Miser yield criterion were taken as fitness functions of the fiber prepreg and the metal laminate, respectively. The design variables were fiber orientation angles. In genetic algorithm, the tournament selection and the uniform crossover method were used. The elitist model was also used to be effective evolution strategy and the creeping random search method was adopted in order to approach a solution with high accuracy. Optimization results were given for various loading conditions and compared with CFRP(Carbon Fiber Reinforced Plastic). The results show that the FMLC is more excellent than the CFRP in point and uniform loading conditions and it is more stable to unexpected loading because the deviation of failure index is smaller than that of CFRP.

  • PDF

Decision-making of alternative pylon shapes of a benchmark cable-stayed bridge using seismic risk assessment

  • Akhoondzade-Noghabi, Vahid;Bargi, Khosrow
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.583-607
    • /
    • 2016
  • One of the main applications of seismic risk assessment is that an specific design could be selected for a bridge from different alternatives by considering damage losses alongside primary construction costs. Therefore, in this paper, the focus is on selecting the shape of pylon, which is a changeable component in the design of a cable-stayed bridge, as a double criterion decision-making problem. Different shapes of pylons include H, A, Y, and diamond shape, and the two criterion are construction costs and probable earthquake losses. In this research, decision-making is performed by using developed seismic risk assessment process as a powerful method. Considering the existing uncertainties in seismic risk assessment process, the combined incremental dynamic analysis (IDA) and uniform design (UD) based fragility assessment method is proposed, in which the UD method is utilized to provide the logical capacity models of the structure, and the IDA method is employed to give the probabilistic seismic demand model of structure. Using the aforementioned models and by defining damage states, the fragility curves of the bridge system are obtained for the different pylon shapes usage. Finally, by combining the fragility curves with damage losses and implementing the proposed cost-loss-benefit (CLB) method, the seismic risk assessment process is developed with financial-comparative approach. Thus, the optimal shape of the pylon can be determined using double criterion decision-making. The final results of decision-making study indicate that the optimal pylon shapes for the studied span of cable-stayed bridge are, respectively, H shape, diamond shape, Y shape, and A shape.

CFD interpretation of gas flow around Ship's Funnel and Optimum Design Criterion (선박 연돌 형상이 배기가스 흐름에 미치는 영향과 연돌 설계)

  • Shin, Hyun-Joon;Park, Sang-Min;Kim, Jong-Hwa
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.63-69
    • /
    • 2011
  • Exhaust gases of a vessel from a main engine, a diesel generator and an incinerator contain very harmful substances like soot, $SO_2$ and NOx. Careful design of funnel shape is required to prevent those harmful exhaust gases from influencing on accommodation and a fan room. Meanwhile, the exhaust gases are also hot enough to damage electronic devices like radar. Therefore the funnel design should be considered so that electronic devices are not directly exposed to the exhaust gas in the strong stern wind. This study may propose guidelines of optimum design criterion for the anti-thermal damage design of the electronic devices and anti-recirculating design of harmful exhaust gas near the accommodation. From CFD analyses, we can understand that the major factors affecting the exhaust gas dispersion are the large scale mixing by separation vortices and the sluggish flow in the recirculation region. We hope that the funnel flow analysis around ship's funnel is used for practical optimum funnel design to minimize the exhaust gas dispersion by adjusting the funnel shape, the position of the exhaust pipe, the shape of bulwark, the exhaust direction of air ventilated an engine room and the angle of the exhaust pipe.

  • PDF

Establishing a stability switch criterion for effective implementation of real-time hybrid simulation

  • Maghareh, Amin;Dyke, Shirley J.;Prakash, Arun;Rhoads, Jeffrey F.
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1221-1245
    • /
    • 2014
  • Real-time hybrid simulation (RTHS) is a promising cyber-physical technique used in the experimental evaluation of civil infrastructure systems subject to dynamic loading. In RTHS, the response of a structural system is simulated by partitioning it into physical and numerical substructures, and coupling at the interface is achieved by enforcing equilibrium and compatibility in real-time. The choice of partitioning parameters will influence the overall success of the experiment. In addition, due to the dynamics of the transfer system, communication and computation delays, the feedback force signals are dependent on the system state subject to delay. Thus, the transfer system dynamics must be accommodated by appropriate actuator controllers. In light of this, guidelines should be established to facilitate successful RTHS and clearly specify: (i) the minimum requirements of the transfer system control, (ii) the minimum required sampling frequency, and (iii) the most effective ways to stabilize an unstable simulation due to the limitations of the available transfer system. The objective of this paper is to establish a stability switch criterion due to systematic experimental errors. The RTHS stability switch criterion will provide a basis for the partitioning and design of successful RTHS.