• Title/Summary/Keyword: design conditions

Search Result 11,826, Processing Time 0.043 seconds

Design Improvement of Front-End Loader for Tractor to Reduce Stress Concentration and Evaluation of Impact Safety (응력집중 저감을 위한 트랙터용 프론트 로더의 설계개선 및 충격 안전성 평가)

  • Lee, Boo-Youn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.109-119
    • /
    • 2018
  • The purpose of this study is to evaluate the structural safety of the front-end loader for the 90 kW class of agricultural tractors in impact test conditions. Deformation and stress on the loader under the impact test conditions are analyzed using the commercial finite element analysis software ANSYS. In previous research dealing with the initial design of the loader, the maximum stress occurred in the mount and exceeded the yield strength of the material. In this paper, an improved design of the mount of the loader was proposed to reduce the stress concentration in the initial design. The safety of the improved design was verified by performing rigid-body dynamics analysis, transient structural analysis, and static structural analysis under three impact test conditions: a drop and catch test, a corner pull test, a corner push test. It was found that the local stress concentration in the mount that appeared in the initial design was greatly reduced in the improved design, and that the maximum stresses occurred in the three impact test conditions are smaller than the yield strength. It is expected that the design improvement of the mount proposed in this study and the method of analysis may be effectively used to enhance structural safety in the development of new model front loaders in the future.

An Efficient Engineering Design Education Framework in Information Network Engineering

  • Lee, Sang-Gon;Koh, Kyeong-Uk
    • Journal of Engineering Education Research
    • /
    • v.15 no.5
    • /
    • pp.64-68
    • /
    • 2012
  • Design factors such as design objects establishment, analysis, synthesis, production, test and evaluation should be educated in a systematic way. Also design ability to reflect practical restrictive conditions such as industrial standards, economic feasibility, environmental impact, aesthetics, safety and reliability, ethical impacts and social impacts should be cultivated. In this paper, we explain the meaning of these terms and propose a systematic engineering design education framework satisfying Korean engineering education accreditation criteria. We also present a simple implementation in information network engineering.

A Study on Injection Molding Analysis and Validation of Large Injection-Molded Body Using Design of Experiment (실험계획법을 이용한 대형 사출물의 사출성형 해석과 검증에 관한 연구)

  • Lee Hyoung-soo;Lee Hi-Koan;Yang Gyun-eui
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.109-114
    • /
    • 2005
  • The large injection molded parts technology such as instrument panel, front and rear bumper are presented for a precision molding. Some lead time and cost are required to product these part from design to mass product. Recently, CAE is widely used in product design, mold design and analysis of molding conditions to reduce time and cost. The optimal molding conditions can be obtained by DOE(Design of Experiment). The optimal design applications with CAE and DOE have been used in small molded parts. However, application to the large molded body is not reported. In this paper, optimization of injection molding process is studied for quality control in mass production of automobile bumper. Mold temperature difference is chosen through robust design of injection molding process, the molding process being optimized in term of shrinkage and deflection. The optimal conditions through DOE are validated by using injection molding analysis.

  • PDF

Optimal Design of Lightweight Two-Speed Transmission of Electric Vehicles (전기자동차용 2속 변속기의 경량 최적 설계)

  • Choi, Jaehoon;Suh, Junho;Park, Nogil
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.96-104
    • /
    • 2020
  • The electric vehicle industry is rapidly developing because of enforced environmental regulations, and several studies have been conducted on the multispeed transmission to improve the fuel efficiency of electric vehicles. Among these studies, research on the power density improvement of electric vehicle transmission is critical. Thus, the optimal design of the gear train is necessary to enhance transmission efficiency. In this study, an optimal design methodology for the lightweight two-speed transmission of electric vehicles is proposed. Because a multispeed transmission has many operating conditions and equality and inequality constraints, a new gear design method that combines analytical and iterative methods is applied without using complex optimization algorithms. Sets of possible design variables are generated considering the operating conditions and various design variables. The modules and face width ratios of each stage gear that satisfy the corresponding operating conditions are analytically calculated. The volume of the gear train is calculated, evaluated, and arranged using these values to determine the optimal solution for minimizing the volume, and the proposed methodology is applied to the actual model to verify its effectiveness. The design of a two-speed transmission with multiple operating conditions and constraints without complicated optimization algorithms can be optimized.

Off-Design Performance Analysis of a Counterflow-Type Cooling Tower (대향류형 냉각탑의 탈설계 성능해석)

  • 신지영;손영석;한동원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.3
    • /
    • pp.191-198
    • /
    • 2002
  • Cooling tower design procedure was set up using conventional Merkel theory, The design data could be different depending on the characteristic curve that the engineer chose. It reveals that the consistent and reasonable criteria are required based on the exact information of the cooling tower Performance. In this study, an off-design performance analysis program for a counterflow-type cooling tower was developed and verified by comparing with experimental data. Also, the off-design performance with various operating conditions was analyzed.

A study on the change of the living conditions and the role of the Universal Design in an aged society (고령사회에 있어서 생활환경의 변화와 유니버설디자인의 역할)

  • 김경태
    • Archives of design research
    • /
    • v.17 no.2
    • /
    • pp.231-240
    • /
    • 2004
  • The present study approached conceptually the various problems which occurred in the living conditions during the modernization under the rapid growth drive and their solutions. It seems that the basis of the various problems which occurred in the highly informational and aged society lies in the discord of usability in the living conditions including the tools. It can be said that the secured social equity through the usability plays and important role in enhancing the quality of life of the prosumer, especially the elderly, by providing the self-confidence and the pleasure, and helping the smooth formation of the community The purpose of the present study was to find out the role of the design, as a professional field, on the various social pathological situation and the problems of the living conditions, and, especially, the role of the Universal Design on the desirable reorganization of the living conditions(the change of the living conditions through the community activation) which put the importance on the tool condition.

  • PDF

Intelligent design of retaining wall structures under dynamic conditions

  • Yang, Haiqing;Koopialipoor, Mohammadreza;Armaghani, Danial Jahed;Gordan, Behrouz;Khorami, Majid;Tahir, M.M.
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.629-640
    • /
    • 2019
  • The investigation of retaining wall structures behavior under dynamic loads is considered as one of important parts for designing such structures. Generally, the performance of these structures is under the influence of the environment conditions and their geometry. The aim of this research is to design retaining wall structures based on smart and optimal systems. The use of accuracy and speed to assess the structures under different conditions is one of the important parts sought by designers. Therefore, optimal and smart systems are able to have better addressing these problems. Using numerical and coding methods, this research investigates the retaining wall structure design under different dynamic conditions. More than 9500 models were constructed and considered for modelling design. These designs include height and thickness of the wall, soil density, rock density, soil friction angle, and peak ground acceleration (PGA) variables. Accordingly, a neural network system was developed to establish an appropriate relationship between data to obtain safety factor (SF) of retaining walls under different seismic conditions. Different parameters were analyzed and the effect of each parameter was assessed separately. According to these analyses, the structure optimization was performed to increase the SF values. The optimal and smart design showed that under different PGA conditions, the structure performance can be appropriately improved while utilization of the initial (or basic) parameters leads to the structure failure. Therefore, by increasing accuracy and speed, smart methods could improve the retaining structure performance in controlling the wall failure. The intelligent design process of this study can be applied to some other civil engineering applications such as slope stability.

Experimental Study on the Optimized Lubrication Conditions in MQL Turning of Workpieces with Taper Angle (테이퍼 각을 가진 소재의 MQL 선삭가공에서 최적 윤활 조건에 관한 실험적 연구)

  • Kim, Dong-Hyeon;Kang, Dong-Wi;Cha, Na-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.63-69
    • /
    • 2013
  • Many researchers are trying to reduce the use of lubrication fluids in metal cutting to obtain safety, environmental and economical benefits. The aim of this study is to determine the optimization lubrication conditions in minimum quantity lubrication(MQL) turning of workpieces with taper angle. This study has been considered about various conditions of MQL. The objective functions are cutting force and surface roughness. Design factors are nozzle diameter, nozzle angle, MQL supply pressure, distance between tool and nozzle and length of supply line. The cutting force and surface roughness were statistically analyzed by the use of the Box-Behnken method. As a results, optimum lubrication conditions were suggested and verification experiment has been performed. The results of this study are expected to help the selection of lubrication conditions in MQL turning.

A Study on the Performance Evaluation considering Geotechnical Conditions (지반상태를 고려한 구조물 성능 평가 방향에 관한 연구)

  • Yang, Tae-Seon;Lee, Kyu-Hwan;Kim, Je-Kyung;Kim, Byung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.973-976
    • /
    • 2009
  • This paper shows that the method of validation on performance-based design is studied on geotechnical conditions. In the design of structure foundation are studied the evaluation items on this matter.

  • PDF

A Survey on the Wearing Conditions of Sports Brassiere -Focus on Women in Their 40s-50s- (스포츠브래지어 착용실태 -40~50대 중년여성을 중심으로-)

  • Park, Ja Young;Jang, Jeong Ah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.5
    • /
    • pp.883-900
    • /
    • 2017
  • This study provides basic reference data to develop sports brassieres appropriate for women in their forties and fifties. The study focused on analyzing the exercise status, brassiere-wearing conditions, purchase conditions, preferred design and functionality by age as well as exercise strength based on 393 questionnaires. Middle-aged women favorite exercises included running, yoga and golfing; in addition the most important purpose to exercises was healthcare. The largest number of respondents exercised once to three times a week for 3 years or longer. The analysis on sports brassiere-wearing conditions by exercise strength showed that those who favor intense exercise tended to wear sports brassieres more frequently. In addition, many complained about breast-shaking and an unsatisfactory shape when they wore a sports brassiere. The analysis on purchase conditions showed that increased interest in intense sports led to more use of specialized sports shops. The analysis of the design and functionality preference showed that increased interest in intense sports increased interest in a body-wrapping sports brassiere design. The most frequently required functions also included the prevention of breast-shaking and a fixed brassiere-position.