• Title/Summary/Keyword: design con sideration

Search Result 2, Processing Time 0.014 seconds

공작기계 구조물의 System Identification에 관한 연구

  • 하병한;노승훈;정성환;김교형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.323-328
    • /
    • 1992
  • The vibrations of the main spindles of the M/C tools is the most important in the con- sideration of the dynamic performance of the M/C tools. In order to analyze and predict the dynamic behaviour of the machine tool structure it is necessary to have the mathematical model of the system. The system identification is the procedure to provide us with the mathematical model of the system of which we want to know the dynamic characteristics. This study illustrates a procedure of the system identification of the structure of the M/C tools to predict the dynamic behaviour of the machine and further to have the basis for the design of M/C tools.

A 100 HP HTS Motor Design and the Performance Analysis (100 HP급 고온초전도 모터의 설계 및 성능 해석)

  • 백승규;손명환;김석환;이언용;권영길
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.2
    • /
    • pp.31-37
    • /
    • 2002
  • A 100 〔HP〕 rated synchronous motor with superconducting rotating field winding has been designed based on the formulated equations established from 2 dimensional magnetic field distributions in a cylindrical coordinate The cross-section was drawn based on calculated design results via Fortran program and then modeled with FEM (Finite Element Method) to investigate the machine performances. First of all, the magnetic field distributions are analysed in many ways according to the field directions and the armature currents. Especially after the rotating Held winding is arranged with BSCCO-2223 high-temperature superconducting(HTS) pancake coils, the exerted magnetic field normally on the HTS tape is calculated through FEM. And the machine output power is calculated according to the torque ang1es which lie between the field and the armature main flux lines. Moreover, this Paper includes the eddy-current loss variations of a copper damper located between the field and the armature coils and design considerations of the 100 HP HTS motor utilizing ferro-magnetic material.