• Title/Summary/Keyword: design computing

Search Result 2,914, Processing Time 0.034 seconds

Virtual to Physical: Integration of Design Computing and Digital Fabrication in Architectural Pedagogy

  • Lee, Youngjin
    • Architectural research
    • /
    • v.17 no.1
    • /
    • pp.21-30
    • /
    • 2015
  • This study examines the significance of digital fabrication of scaled physical models in the digital design process and highlights the integration of design computing and digital fabrication in architectural education. Advances in CAD/CAM technologies have increasingly influenced building design and construction practices by allowing the production of complex forms that were once difficult to design and construct using traditional technologies. At the advent of digital architecture, schools of architecture introduced digital technologies to their curriculum, focusing more on design computing than digital fabrication, preventing students from completely mastering digital technologies. The significance of digital fabrication for scaled physical models as a design media within the digital design loop is discussed. Two case studies of leading schools of architecture that are successful in building the bridge between both areas are given. These focus on the curricular structure to integrate both areas within design studios. Finally, a curricular structure offering students a balanced approach to these areas of knowledge is proposed based on what was learned from these case studies.

A comparative study of multi-objective evolutionary metaheuristics for lattice girder design optimization

  • Talaslioglu, Tugrul
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.417-439
    • /
    • 2021
  • The geometric nonlinearity has been successfully integrated with the design of steel structural system. Thus, the tubular lattice girder, one application of steel structural systems have already been optimized to obtain an economic design following the completion of computationally expensive design procedure. In order to decrease its computing cost, this study proposes to employ five multi-objective metaheuristics for the design optimization of geometrically nonlinear tubular lattice girder. Then, the employed multi-objective optimization algorithms (MOAs), NSGAII, PESAII, SPEAII, AbYSS and MoCell are evaluated considering their computing performances. For an unbiased evaluation of their computing performance, a tubular lattice girder with varying size-shape-topology and a benchmark truss design with 17 members are not only optimized considering the geometrically nonlinear behavior, but three benchmark mathematical functions along with the four benchmark linear design problems are also included for the comparison purpose. The proposed experimental study is carried out by use of an intelligent optimization tool named JMetal v5.10. According to the quantitative results of employed quality indicators with respect to a statistical analysis test, MoCell is resulted with an achievement of showing better computing performance compared to other four MOAs. Consequently, MoCell is suggested as an optimization tool for the design of geometrically nonlinear tubular lattice girder than the other employed MOAs.

Utilizing Soft Computing Techniques in Global Approximate Optimization (전역근사최적화를 위한 소프트컴퓨팅기술의 활용)

  • 이종수;장민성;김승진;김도영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.449-457
    • /
    • 2000
  • The paper describes the study of global approximate optimization utilizing soft computing techniques such as genetic algorithms (GA's), neural networks (NN's), and fuzzy inference systems(FIS). GA's provide the increasing probability of locating a global optimum over the entire design space associated with multimodality and nonlinearity. NN's can be used as a tool for function approximations, a rapid reanalysis model for subsequent use in design optimization. FIS facilitates to handle the quantitative design information under the case where the training data samples are not sufficiently provided or uncertain information is included in design modeling. Properties of soft computing techniques affect the quality of global approximate model. Evolutionary fuzzy modeling (EFM) and adaptive neuro-fuzzy inference system (ANFIS) are briefly introduced for structural optimization problem in this context. The paper presents the success of EFM depends on how optimally the fuzzy membership parameters are selected and how fuzzy rules are generated.

  • PDF

A Proposal of the Usage Metering Functions on Cloud Computing-Based Building Information Modeling (BIM) and the Law for the Open BIM Ecosystem (열린 BIM 생태계 조성을 위한 클라우드 컴퓨팅 기반 BIM 서비스 환경의 사용량 측정 기술 및 법 규정 제안)

  • Kim, Byungkon;Kim, Jongsung
    • Journal of KIBIM
    • /
    • v.6 no.3
    • /
    • pp.49-56
    • /
    • 2016
  • As project opportunities for the Architecture, Engineering and Construction (AEC) industry have grown more complex and larger, the utilization of Building Information Modeling (BIM) technologies for three-dimensional (3D) design and simulation practices has been increasing significantly; the typical applications of the BIM technologies include clash detection and design alternative based on 3D planning, which have been expanded over to the technology of construction management in the AEC industry for virtual design and construction. As for now, commercial BIM software has been operated under a single-user environment, which is why initial costs for its introduction are very high. Cloud computing, one of the most promising next-generation Internet technologies, enables simple Internet devices to use services and resources provided with BIM software. Recently in Korea, studies to link between BIM and cloud computing technologies have been directed toward saving costs to build BIM-related infrastructure, and providing various BIM services for small- and medium-sized enterprises (SMEs). This study addressed development of the usage metering functions of BIM software under cloud computing architecture in order to archive and use BIM data and create an optimal revenue structure so that the BIM services may grow spontaneously, considering a demand for cloud resources. For the reason, we surveyed relevant cases, and then analyzed needs and requirements from AEC industry. Based on the relevant cases, customizing for cloud BIM and design for the development was performed. We also surveyed any related-law to support cloud computing-based BIM service. Finally, we proposed herein how to optimally design and develop the usage metering functions of cloud BIM software.

Model-based Autonomic Computing Framework for Cyber-Physical Systems (CPS를 위한 모델 기반 자율 컴퓨팅 프레임워크)

  • Kang, Sungjoo;Chun, Ingeol;Park, Jeongmin;Kim, Wontae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.5
    • /
    • pp.267-275
    • /
    • 2012
  • In this paper, we present the model-based autonomic computing framework for a cyber-physical system which provides a self-management and a self-adaptation characteristics. A development process using this framework consists of two phases: a design phase in which a developer models faults, normal status constrains, and goals of the CPS, and an operational phase in which an autonomic computing engine operates monitor-analysis-plan-execute(MAPE) cycle for managed resources of the CPS. We design a hierachical architecture for autonomic computing engines and adopt the Model Reference Adaptive Control(MRAC) as a basic feedback loop model to separate goals and resource management. According to the GroundVehicle example, we demonstrate the effectiveness of the framework.

Development of Digital Contents to Improve Computational Thinking

  • Ryu, Mi-Young;Han, Sun-Gwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.12
    • /
    • pp.87-93
    • /
    • 2017
  • The purpose of this study is to design and develop of digital contents to improve computational thinking in the online education environment. First, we planned the design and development of contents with 19 experts of Software education. Digital content was designed from the point of view of improving the educational quality and the quality of contents for the improve of computing thinking. The content type is classified into the SW education area; computer science, programming, physical computing, convergent computing, computing thinking, and software education that improves the computing thinking. And we designed 45 learning programs for each SW education area. Designed learning contents were developed in 464 lessons to suit the online education environment. The content validity of the proposed content was verified by the expert group and the average CVI value was over .83. Through this, we could analyze that the developed contents will help learners to expand their computing thinking.

Ubiquitous computing Technology for Shipbuilding (조선 산업에서의 유비쿼터스 기술 활용)

  • Lee, Kyung-Ho;Kim, Dong-Geun;Park, Jong-Hoon;Kim, Dae-Seok
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.731-736
    • /
    • 2007
  • Ubiquitous computing is a model of computing in which computer functions are integrated into everyday life, providing services and information in anywhere and anytime fashion. Augmented Reality is one of ubiquitous computing technologies to provide new paradigm utilized to interact between human and computer. By adding computer-generated non-visual information to real information and their interaction. user can get the improved and more knowledgeable information about real world. The purpose of this paper is the integration of AR and knowledge-base reasoning technology in ubiquitous computing. Through the introduced concept, it is enable to provide adequate knowledge in the process of ship design and manufacturing easily (Knowledge Everywhere). That is, this is a basic research to construct knowledge-based ubiquitous environment (KAD/KAM) in shipbuilding industry.

  • PDF

Quantum Computing Revolutionizing Materials Science: Basic Principles and Trends in Applications for Nanomaterials (재료 과학을 변혁시키는 양자 컴퓨팅: 기본 원리와 나노 소재 응용 연구 동향 )

  • Jae-Hee Han;Joonho Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.6
    • /
    • pp.590-599
    • /
    • 2024
  • Quantum computing is set to transform the field of materials science, offering computational methods that could far surpass conventional approaches for tackling intricate material design challenges. This review introduces the foundational principles of rapidly growing quantum computing and its application trends in the design and analysis of nanomaterials. We explain how quantum speedup, achieved through quantum algorithms utilizing qubit superposition and entanglement, is applied to material design. Additionally, the principles and research trends of quantum variational methods, including the Variational Quantum Eigensolver (VQE), which has recently gained attention as a quantum algorithm simulation technique, will be discussed. By combining new techniques based on quantum algorithms with the quantum speed-up, the quantum computing is expected to offer new insights into data-intensive materials research and provide innovative methodologies for the development of new functional materials. With the advancement of quantum algorithms, the field of materials science could enter a new era, enabling more precise and efficient approaches in materials design and functional analysis.