• Title/Summary/Keyword: design and simulation

Search Result 15,949, Processing Time 0.041 seconds

Design of Ground-Coupled Heat Pump (GCHP) System and Analysis of Ground Source Temperature Variation for School Building (학교 건물용 지열 히트펌프 시스템 설계와 지중 순환수 온도 변화 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • Ground-coupled heat pump (GCHP) systems have become an efficient alternative to conventional cooling and heating methods due to their higher energy using efficiency. Although some experimental and simulation works related to performance analysis of GCHP systems for commercial buildings have been done, relatively little has been reported on the performance evaluation of GCHP systems for school buildings. The purpose of this simulation study is to evaluate the performance of a hypothetical GCHP system for a school building in Seoul. We collected various data of building specifications and construction materials for the building and then modeled to calculate hourly building loads with SketchuUp and TRNSYS V17. In addition, we used GLD (Ground Loop Design) V2016, a GCHP system design and simulation software, to design the GCHP system for the building and to simulate temperature of circulating water in ground heat exchanger. The variation of entering source temperature (EST) into the system was calculated with different prediction time and then each result was compared. For 20 years of prediction time, EST for baseline design (Case A) based on the hourly simulation results were outranged from the design criteria.

Perception on Residential Environment Planning for Seniors among University Students visited Aging Simulation Center (노인을 위한 주거환경계획 의식에 관한 연구 - 노인생애체험센터를 방문한 예비디자이너를 중심으로 -)

  • Shin, Hwa-Kyung;Lee, Yun-Hee;Kim, Young-Joo
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2008.11a
    • /
    • pp.322-326
    • /
    • 2008
  • Due to the rapid increasing in the aged population, it calls for social countermeasures urgently. Especially, there are increasing needs of space environment to support physical and spiritual characteristics of elderly. When designing space environment including house, there are growing consideration for elderly and extending appreciation of aging. The purpose of this study is to investigate the perception on environment planning for the seniors among university students who majoring in Housing & Interior Design and who visited the Aging Simulation Center located in Seoul. The Aging Simulation Center gives a chance of space design to support the elderly based on the experiences of daily living for the designers who design environment for elderly. Questionnaire survey was conducted to obtain data from 93 university students in their 20s majoring in housing and interior design who visited the Aging Simulation Center. The research findings showed that the recognition for design elements of residential environment for the elderly of respondents was changed toward positive way after visiting the Aging Simulation Center. The Aging Simulation Center was an effective educational environment for the preliminary designers to understand aging and the importance of appropriate design for users' needs. That is, aging simulation space can improve recognition of necessity of universally designed environment to support the elderly. Handrails around bathtub and wash basin, stair slope, electric auto-level controlled kitchen counter and kitchen cabinet were especially perceived for the respondents as very essential design elements to support the aged.

  • PDF

Expert Design Evaluation System for injection Molding

  • Kim, Sang-Gook;Huh, Yong-Jeong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.62-75
    • /
    • 2001
  • The design and manufacture of injection molded polymeric parts with desired properties is a costly process dominated by empiricism including repeated modification of actual tooling. This paper presents and expert design evaluation system which can predict the mechanical performance of a molded product and diagnose the design before the actual mold is machined. The knowledge-based system synergistically combines a rule-based expert system with CAE programs. An iterative boundary pressure reflection method(IBPR) is developed to automate the cavity filling simulation program and to predict thermo-mechanical properties of a molded part precisely. Mathematical models of weldline and frozen-in molecular orientation are established to determine the spatial variation of microstructural anisotropies of a molded part from the result of cavity filling simulation. The strength ellipse is devised as and index which represents th spatial distribution of the microstructural anisotropies of a molded part, Heuristic knowledge of injection molding, flow simulation, and mechanical performance prediction is formalized as rules of an expert consultation system. The expert system interprets the analytical results of the process simulation, predicts the performance, evaluates the design and generates recommendations for optimal design alternative.

  • PDF

A study on the design of ALFLEX flight control system

  • Imado, Fumiaki;Yuasa, Eiji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.219-222
    • /
    • 1996
  • Authors ahve developed ALFLEX simulation program which can implement the flight simulation ad control system design of ALFLEX efficiently by using aerodynamic data provided by NAL/NASDA. Then we have designed and example of flight path and altitude control system of ALFLEX. The philosophy of the design method is explained in detail, and a flight simulation result is shown, which verifies the fine performance of the system.

  • PDF

Distributed and Real-time Integrated Simulation System on Avionics

  • Zhou, Yaoming;Liu, Yaolong;Li, Shaowei;Jia, Yuhong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.574-578
    • /
    • 2017
  • In order to achieve iterative design in early R&D period, a Distributed and Real-time Integrated Simulation System for avionics based on a Model-Based Systems Engineering (MBSE) method is proposed. The proposed simulation system includes driver, simulation model, monitor, flight visual model and aircraft external model.The effect of this simulation system in iterative design and system verification is testified by several use cases. The result shows that the simulation system, which can play an important role in iterative design and system verification, can reduce project costs and shorten the entire R&D period.

Optimum Design of Front Toe Angle Using Design of Experiment and Dynamic Simulation for Evaluation of Handling Performances (실험계획법을 이용한 전륜 토우각의 최적설계 및 조종 안정성능 평가 시뮬레이션)

  • 서권희;민한기;천인범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.120-128
    • /
    • 2000
  • At the initial design stage of a new vehicle, the chassis layout has the most important influence on the overall vehicle performance. Most chassis designers have achieved the target performances by trial and error method as well as individual knowhow. Accordingly, a general procedure for determining the optimum location of suspension hard points with respect to the kinematic characteristics needs to be developed. In this paper, a method to optimize the toe angle in the double wishbone type front suspension of the four-wheel-drive vehicle is presented using the design of experiment, multibody dynamic simulation, and optimum design program. The handling performances of two full vehicle models having the initial and optimized toe angle are compared through the single lane change simulation. The sensitive design variables with respect to the kinematic characteristics are selected through the experimental design sensitivity analysis using the perturbation method. An object function is defined in terms of the toe angle among those kinematic characteristics. By the design of experiment and regression analysis, the regression model function of toe angle is obtained. The design variables which make the toe angle optimized ae extracted using the optimum design program DOT. The single lane change simulation and test of the full vehicle model are carried out to survey the handling performances of vehicle with toe angle optimized. The results of the single lane change simulation show that the optimized vehicle has the more improved understeer tendency than the initial vehicle.

  • PDF

Interface Scheme for Simulation Software with FMS Design & Operation (FMS 설계/운용을 위한 상용 시뮬레이션 패키지 인터페이스)

  • 이승우
    • Journal of the Korea Society for Simulation
    • /
    • v.3 no.1
    • /
    • pp.55-63
    • /
    • 1994
  • FMS is two or more computer controlled units interconnected with automated workhandling equipment and supervised by an executive computer having random scheduling capabilities. The complex nature of a FMS, coupled with the need to maximize its performance, means that such a system can be effectly designed only by iterative computer simulation methods. At the operational level, simulation had a reduced role to evaluate the performance of planned FMS under a variety of operating strategies. This is probably due to the fact that few simulation models are able to access the current status data of the system. This study reviews the role of simulation for design/operation of FMS and suggests an interface scheme for incorporating a simulation package with a FMS operational database. This scheme can be used for reducing the performance gap between design and real operation of a FMS.

  • PDF

INTEGRATED DEVELOPMENT ENVIRONMENT FROM MODELING TO IMPLEMENTATION FOR AUTOMOTIVE REAL-TIME EMBEDDED CONTROL SYSTEMS

  • Ma, J.;Youn, J.;Shin, M.;Hwang, I.;SunWoo, M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.345-351
    • /
    • 2006
  • Software-In-the-Loop Simulation(SILS) and Rapid Control Prototyping(RCP) are proposed as an integrated development environment to support the development process from system design to implementation. SILS is an environment used to simulate control systems with temporal behavior. RCP offers seamless phase shift from design to implementation based on automatic code generation. There are several toolsets that support control system design and analysis. A few of these tools generate the control software automatically. However, most of these design toolsets do not cover temporal behavior which appears after implementation. In earlier toolsets, the design and the implementation of a control system are considered as two separate processes which mean the conventional development process is not connected strictly. SILS/RCP environments work under an identical platform and use the same representation for system modeling. An integrated SILS/RCP environment makes it possible to design controllers under conditions similar to real execution during off-line simulation and to realize controllers in the early design phase. SILS/RCP environments integrate the design and implementation phases which reduce the time-to-market and provide greater performance-assured design. The establishment of SILS/RCP and the practical design approaches are presented.

A Simulation Study for Detailed Design of A-Mart Logistics Center for General Products (A-마트 상온 제품 종합물류센터 실시설계를 위한 시뮬레이션)

  • Jeon, Byoung-Hack;Jang, Seong-Young
    • IE interfaces
    • /
    • v.20 no.1
    • /
    • pp.21-32
    • /
    • 2007
  • This paper deals with the simulation model for A-Mart logistic center design and operations. In developed simulation model, receiving docks, conveyor sorter, conveyor system, shipping docks, material handling devices and manual sorting stations are considered. Three types of cargo such as transfer center cargo, distribution center cargo and supermarket cargo are considered. The simulation model and process animation are developed using the simulation package ARENA. Among various design and operation alternatives consisting of the number of workers of receiving dock, allocation of receiving docks by cargo types, conveyor sorter velocity, the number of folk-lift, the number of manual sorting operators and overall layout, the best alternatives of each subsystem are selected by simulation analysis. The major performance measures such as sorter throughput, utilization of operators at each station, receiving docks utilization and folk-lift utilization are considered for the alternative evaluation.

Simulation-based Design Verification for High-performance Computing System

  • Jeong Taikyeong T.
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.12
    • /
    • pp.1605-1612
    • /
    • 2005
  • This paper presents the knowledge and experience we obtained by employing multiprocessor systems as a computer simulation design verification to study high-performance computing system. This paper also describes a case study of symmetric multiprocessors (SMP) kernel on a 32 CPUs CC-NUMA architecture using an actual architecture. A small group of CPUs of CC-NUMA, high-performance computer system, is clustered into a processing node or cluster. By simulating the system design verification tools; we discussed SMP OS kernel on a CC-NUMA multiprocessor architecture performance which is $32\%$ of the total execution time and remote memory access latency is occupied $43\%$ of the OS time. In this paper, we demonstrated our simulation results for multiprocessor, high-performance computing system performance, using simulation-based design verification.

  • PDF