• Title/Summary/Keyword: design accidental load

Search Result 22, Processing Time 0.028 seconds

Risk Based Accidental Limit State Evaluation on Explosion Accident at Shale Shaker Room of Semi-Submersible Drilling Rig (반잠수식 시추선의 Shale Shaker Room 폭발 사고에 대한 위험도 기반 사고한계상태 평가)

  • Yoo, Seung-Jae;Kim, Han-Byul;Park, Jin-Hoo;Won, Sun-Il;Choi, Byung-Ki
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2015.09a
    • /
    • pp.69-73
    • /
    • 2015
  • An evaluation of the accidental limit state (ALS) for design of a semi-submersible drilling rig is one of the essential design requirements as well as ultimate limit state (ULS) and fatigue limit state (FLS). This paper describes the ALS evaluation on the explosion accident at shale shaker room of semi-submersible drilling rig. There are three steps for the ALS evaluation such as structural analysis at concept design, risk based safety design and structural analysis at detailed design. For the ALS evaluation at concept design, conceptual explosion overpressure from the Rule guided by the classification society was used in the structural analysis that was carried out using LS-DYNA. To set up the design accidental load (DAL), explosion analysis was carried out using FLACS taking safety barriers into consideration. Then, the structural analysis was carried out applying DAL for the ALS evaluation at detailed design. Through the ALS evaluation on the explosion at shale shaker room, the importance of the risk based safety design was described.

  • PDF

Should accidental eccentricity be eliminated from Eurocode 8?

  • Anagnostopoulos, S.A.;Kyrkos, M.T.;Papalymperi, A.;Plevri, E.
    • Earthquakes and Structures
    • /
    • v.8 no.2
    • /
    • pp.463-484
    • /
    • 2015
  • Modern codes for earthquake resistant building design require consideration of the so-called accidental design eccentricity, to account for torsional response caused by several factors not explicitly considered in design. This provision requires that the mass centres in the building floor be moved a certain percentage of the building's dimension (usually 5%) along both the x and y axes and in both positive and negative directions. If one considers also the spatial combinations of the two component motion in a dynamic analysis of the building, the number of required analyses and combinations increases substantially, causing a corresponding work load increase for practicing structural engineers. Another shortcoming of this code provision is that its introduction has been based primarily on elastic results from investigations of oversimplified, hence questionable, one story building models. This problem is addressed in the present paper using four groups of eccentric braced steel buildings, designed in accordance with Eurocodes 3 (steel) and 8 (earthquake design), with and without accidental eccentricities considered. The results indicate that although accidental design eccentricities can lead to somewhat reduced inelastic response demands, the benefit is not significant from a practical point of view. This leads to suggestions that accidental design eccentricities should probably be abolished or perhaps replaced by a simpler and more effective design provision, at least for torsionally stiff buildings that constitute the vast majority of buildings encountered in practice.

Structural Response of Offshore Plants to Risk-Based Blast Load

  • Heo, YeongAe
    • Architectural research
    • /
    • v.15 no.3
    • /
    • pp.151-158
    • /
    • 2013
  • Offshore oil and gas process plants are exposed to hazardous accidents such as explosion and fire, so that the structural components should resist such accidental loads. Given the possibilities of thousands of different scenarios for the occurrence of an accidental hazard, the best way to predict a reasonable size of a specific accidental load would be the employment of a probabilistic approach. Having the fact that a specific procedure for probabilistic accidental hazard analysis has not yet been established especially for explosion and fire hazards, it is widely accepted that engineers usually take simple and conservative figures in assuming uncertainties inherent in the procedure, resulting either in underestimation or more likely in overestimation in the topside structural design for offshore plants. The variation in the results of a probabilistic approach is determined by the assumptions accepted in the procedures of explosion probability computation, explosion analysis, and structural analysis. A design overpressure load for a sample offshore plant is determined according to the proposed probabilistic approach in this study. CFD analysis results using a Flame Acceleration Simulator, FLACS_v9.1, are utilized to create an overpressure hazard curve. Moreover, the negative impulse and frequency contents of a blast wave are considerably influencing structural responses, but those are completely ignored in a widely used triangular form of blast wave. An idealistic blast wave profile deploying both negative and positive pulses is proposed in this study. A topside process module and piperack with blast wall are 3D FE modeled for structural analysis using LS-DYNA. Three different types of blast wave profiles are applied, two of typical triangular forms having different impulse and the proposed load profile. In conclusion, it is found that a typical triangular blast load leads to overestimation in structural design.

A study on collision strength assessment of a jack-up rig with attendant vessel

  • Ma, Kuk Yeol;Kim, Jeong Hwan;Park, Joo Shin;Lee, Jae Myung;Seo, Jung Kwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.241-257
    • /
    • 2020
  • The rapid proliferation of oil/gas drilling and wind turbine installations with jack-up rig-formed structures increases structural safety requirements, due to the greater risks of operational collisions during use of these structures. Therefore, current industrial practices and regulations have tended to increase the required accidental collision design loads (impact energies) for jack-up rigs. However, the existing simplified design approach tends to be limited to the design and prediction of local members due to the difficulty in applying the increased uniform impact energy to a brace member without regard for the member's position. It is therefore necessary to define accidental load estimation in terms of a reasonable collision scenario and its application to the structural response analysis. We found by a collision probabilistic approach that the kinetic energy ranged from a minimum of 9 MJ to a maximum 1049 MJ. Only 6% of these values are less than the 35 MJ recommendation of DNV-GL (2013). This study assumed and applied a representative design load of 196.2 MN for an impact load of 20,000 tons. Based on this design load, the detailed design of a leg structure was numerically verified via an FE analysis comprising three categories: linear analysis, buckling analysis and progressive collapse analysis. Based on the numerical results from this analysis, it was possible to predict the collapse mode and position of each member in relation to the collision load. This study provided a collision strength assessment between attendant vessels and a jack-up rig based on probabilistic collision scenarios and nonlinear structural analysis. The numerical results of this study also afforded reasonable evaluation criteria and specific evaluation procedures.

Reliability Assessments and Design Load Factors for Reinforced Concrete Containment Structures of Nuclear Power Plant

  • Han, Bong-Koo
    • Nuclear Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.444-450
    • /
    • 1997
  • The current ASME code for reinforced concrete containment structures are not based on probability concepts. The stochastic nature of natural hazard or accidental loads and the variations of material properties require a probabilistic approach for a rational assessment of structural safety and performance. The paper develops design load factors for the serviceability limit state of reinforced concrete containment structures. The target limit state probability is determined and the load factors are calculated by the numerical analysis. Design load factors are proposed and carried out the reliability assessments.

  • PDF

Prediction of Design Ice Load on Icebreaking Vessels under Normal Operating Conditions (정상운항 상태에서 쇄빙선박에 작용하는 설계 빙하중 추정)

  • Choi, Kyung-Sik;Jeong, Seong-Yeob;Nam, Jong-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.603-610
    • /
    • 2009
  • Ice load is one of the important design parameters for the construction of icebreaking vessels. In this paper, the design ice load prediction for the icebreaking vessels under normal operating condition in ice-covered sea is discussed. The ice loads under normal operating condition are expected from sea trials in moderate ice conditions. In this sense the extreme ice loads during heavy ramming or accidental collision are not considered. Current study describes the global ice load on the hull of the icebreaking vessels. Available ice load data from full-scale sea trials are collected and analyzed according to various ship-ice interaction parameters including displacement, stem angle, speed of a ship and flexural strength and thickness of sea ice. The ice load prediction formula is compared with the collected full-scale sea trials data and it shows a good agreement.

Analytical Closed Form Solution for the Impact Load of a Collision between Rigid Bodies and its Application to a Spent Nuclear Fuel Disposal Canister Accidentally Dropped and Impacted on the Ground: Application(Numerical Analysis) (강체간의 충돌에 의한 충격력에 대한 수학적 정해 및 고준위폐기물 처분용기의 지면 추락낙하사고 시의 충돌충격에의 응용: 적용(수치해석))

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.451-457
    • /
    • 2015
  • This paper presents the analytical closed form solution for the impact load of a collision between rigid bodies and its application to a spent nuclear fuel disposal canister accidentally dropped and impacted on the ground. This paper performed a study on the numerical rigid body dynamic analysis to compute the impact load between two rigid bodies, especially, the impulsive force which is applied to the spent nuclear fuel disposal canister in the accidental drop and impact event on the ground. Through this study the impulsive force which is occurring in the spent nuclear fuel disposal canister under accidental drop and impact event on the ground and required in the process of structural safety design of the canister is computed numerically. The main content of this numerical study is about the technical method how to compute the impulsive force applied to the canister under the accidental drop and impact event on the ground by using the commercial computer code for the rigid body dynamic analysis. On the basis of this study a problem to compute the impulsive force which is occurring in the canister in the case of collision with the ground is numerically treated. This numerically computed impulsive force is compared with the theoretical value, which shows a good agreement.

The effect of mass eccentricity on the torsional response of building structures

  • Georgoussis, George K.;Mamou, Anna
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.671-682
    • /
    • 2018
  • The effect of earthquake induced torsion, due to mass eccentricities, is investigated with the objective of providing practical design guidelines for minimizing the torsional response of building structures. Current code provisions recommend performing three dimensional static or dynamic analyses, which involve shifting the centers of the floor masses from their nominal positions to what is called an accidental eccentricity. This procedure however may significantly increase the design cost of multistory buildings, due to the numerous possible spatial combinations of mass eccentricities and it is doubtful whether such a cost would be justifiable. This paper addresses this issue on a theoretical basis and investigates the torsional response of asymmetric multistory buildings in relation to their behavior when all floor masses lie on the same vertical line. This approach provides an insight on the overall seismic response of buildings and reveals how the torsional response of a structure is influenced by an arbitrary spatial combination of mass eccentricities. It also provides practical guidelines of how a structural configuration may be designed to sustain minor torsion, which is the main objective of any practicing engineer. A parametric study is presented on 9-story common building types having a mixed-type lateral load resisting system (frames, walls, coupled wall bents) and representative heightwise variations of accidental eccentricities.

A numerical and experimental approach for optimal structural section design of offshore aluminium helidecks

  • Seo, Jung Kwan;Park, Dae Kyeom;Jo, Sung Woo;Park, Joo Shin;Koo, Jeong Bon;Ha, Yeong Su;Jang, Ki Bok
    • Structural Engineering and Mechanics
    • /
    • v.59 no.6
    • /
    • pp.993-1017
    • /
    • 2016
  • Helicopters are essential for supporting offshore oil and gas activities around the world. To ensure accessibility for helicopters, helideck structures must satisfy the safety requirements associated with various environmental and accidental loads. Recently, offshore helideck structures have used aluminium because of its light weight, low maintenance requirements, cost effectiveness and easy installation. However, section designs of aluminum pancakes tend to modify and/or change from the steel pancakes. Therefore, it is necessary to optimize section design and evaluate the safety requirements for aluminium helideck. In this study, a design procedure was developed based on section optimization techniques with experimental studies, industrial regulations and nonlinear finite element analyses. To validate and verify the procedure, a new aluminium section was developed and compared strength capacity with the existing helideck section profiles.

A Review on Practical Use of Simple Analysis Method based on SDOF Model for the Stiffened Plate Structures subjected to Blast Loads (폭발하중을 받는 보강판 구조물의 간이 해석법에 대한 실용성 검토)

  • Kim, Ul-Nyeon;Ha, Simsik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.2
    • /
    • pp.70-79
    • /
    • 2020
  • The offshore installation units may be subjected to various accidental loads such as collision from supply vessels, impact from dropped objects, blast load from gas explosion and thermal load from fire. This paper deals with the design and strength evaluation method of the stiffened plate structures in response to a blast load caused by a gas explosion accident. It is a comprehensive review of various items used in actual project such as the size and type of the explosive loads, general design procedure/concept and analysis method. The structural analyses using simple analysis methods based on SDOF model and nonlinear finite element analysis are applied to the particular FPSO project. Also validation studies on the design guidance given by simple analysis method based on SDOF model have also considered several items such as backpressure effects, material behavior and duration time of the overpressure. A good correlation between the prediction made by simple analysis method based on SDOF model and nonlinear finite element analysis can be generally obtained up to the elastic limit.