• 제목/요약/키워드: desert pavement

검색결과 3건 처리시간 0.016초

고등학교 세계지리 교과서의 사막포도 형성에 대한 고찰 (A Review on the Formation of Desert Pavements in High School Textbooks of World Geography)

  • 김태호
    • 한국지형학회지
    • /
    • 제23권3호
    • /
    • pp.93-104
    • /
    • 2016
  • High school textbooks of world geography show geomorphic featuresin arid environments such as sand dune, yardang and ventifact which are largely created by aeolian processes. Desert pavements, ubiquitous armored surfaces composed of a mosaic of clasts in hot and arid regions, are introduced as a major landform which can be attributed to wind erosion. However, they are formed by a variety of processes including deflation, surface runoff, upward clast migration and dust accretion that cause coarse particles concentration at the surface. The deflation by wind leaving a lag of coarse clasts has been solely regarded at home, even though the classical mechanism of deflation has been evaluated as a relatively unimportant process of pavement formation abroad through empiricalstudies. The accretionary model is gaining wider acceptance, thus implying that desert pavements could be formed through deposition of aeolian material. In addition, sheetflood and upward migration of clasts, irrelevant to the aeolian processes, could also create stone pavements. As a consequence, the deflation process in high school textbooks has to be urgently modified into a range of processes including aeolian mantling. By stressing that desert pavements are an exceptional geomorphic feature in deserts where wind is a predominant geomorphic agent, they can be used as a good example to demonstrate that a landform is not monogenetic.

환경오염 방지를 위한 식물의 생태학적 연구(III) -도로변 식생과 중금속 함량 및 오염에 관한 연구 (Ecological Studies of Plants for Control of Environmental Pollution, III -The Studies on the Content and Contamination of Heavy Metals and Vegetation of Roadside-)

  • 차종환
    • Journal of Plant Biology
    • /
    • 제17권4호
    • /
    • pp.158-162
    • /
    • 1974
  • Some ecological attributes of perennial plants and Pb contamination were analyzed for study plots near an entrance of Nevade Test Site at Mercury Valley, Nye County, Nevada. The surface of the desert pavement soil was composed of stones (1 to 4cm diameter). The underside of each stone was coated with coarse and fine sand (about 90%). The profiles of soil were constituted with the A-horizon and C-horizon only. The soil pH at the plots ranges from 7.6 to 8.5, C/N was 13 and cation exchange capacity showed 15me/100g. Nine species and 42 number of individuals were found in all plots. Franseria dumosa and Larrea divaricata were dominant species. The discrete clumps of vegetation were consisted of 9 species of common perennials and these were covered about 25% on desert pavement, on the other words, bare area without vegetation was about 75%. The size and spacing of the plants was irregular. Community coefficient as comparison between shrub species in these study area and those in near the low elevation desert indicated a low degree of similarity. Density, cover and productivity in the study plots as compared with those in the nearest study areas in Mercury Valley showed a higher value. The soils in the studied area involved high heavy metal contents in the plant tissue was higher than those of its soil. The leavds of Lycium andersonii tended to accumulate more Zn and Mo than those of the other species. Larrea divaricata leaves accumulated very high leaves of Fe and Ephedra nevadensis were generally high in Mn. Lead contamination was apparent in foliage of desert vegetation collected alongside the roadway, reflecting the variation in traffic volume. Lead contents greater than fifteen-fold of normal (low traffic) were found in plant foliage alongside the heavily traveled roadway. Lead content of old foliage by the heavily traveled roadway was as much as 129 ppm but that of new foliage 17 ppm only.

  • PDF

Stabilized marine and desert sands with deep mixing of cement and sodium bentonite

  • Saberian, Mohammad;Moradi, Mojtaba;Vali, Ramin;Li, Jie
    • Geomechanics and Engineering
    • /
    • 제14권6호
    • /
    • pp.553-562
    • /
    • 2018
  • Road construction is becoming increasingly important in marine and desert areas due to population growth and economic development. However, the load carrying capacity of pavement is of gear concern to design and geotechnical engineers because of the poor engineering properties of the soils in these areas. Therefore, stabilization of the soils is regarded as an important issue. Besides, due to the fuels combustion and carbonate decomposition, cement industry generates around 5% of global $CO_2$ emission. Thus, using bentonite as a natural pozzolan in soil stabilization is more eco-friendly than using cement. The aim of this research is to experimentally study of the stabilized marine and desert sands using deep mixing method by ordinary Portland cement and sodium bentonite. Different partial percentages of cement along with different weight percentages of sodium bentonite were added to the sands. Unconfined compression test (UCS), Energy Dispersive X-ray (EDX), and Scanning Electron Microscope (SEM) were conducted on the specimens. Moreover, a mathematical model was developed for predicting the strength of the treated soils.