• Title/Summary/Keyword: descriptor systems

검색결과 138건 처리시간 0.027초

EEIRI: Efficient Encrypted Image Retrieval in IoT-Cloud

  • Abduljabbar, Zaid Ameen;Ibrahim, Ayad;Hussain, Mohammed Abdulridha;Hussien, Zaid Alaa;Al Sibahee, Mustafa A.;Lu, Songfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권11호
    • /
    • pp.5692-5716
    • /
    • 2019
  • One of the best means to safeguard the confidentiality, security, and privacy of an image within the IoT-Cloud is through encryption. However, looking through encrypted data is a difficult process. Several techniques for searching encrypted data have been devised, but certain security solutions may not be used in IoT-Cloud because such solutions are not lightweight. We propose a lightweight scheme that can perform a content-based search of encrypted images, namely EEIRI. In this scheme, the images are represented using local features. We develop and validate a secure scheme for measuring the Euclidean distance between two descriptor sets. To improve the search efficiency, we employ the k-means clustering technique to construct a searchable tree-based index. Our index construction process ensures the privacy of the stored data and search requests. When compared with more familiar techniques of searching images over plaintexts, EEIRI is considered to be more efficient, demonstrating a higher search cost of 7% and a decrease in search accuracy of 1.7%. Numerous empirical investigations are carried out in relation to real image collections so as to evidence our work.

Development and application of a vision-based displacement measurement system for structural health monitoring of civil structures

  • Lee, Jong Jae;Fukuda, Yoshio;Shinozuka, Masanobu;Cho, Soojin;Yun, Chung-Bang
    • Smart Structures and Systems
    • /
    • 제3권3호
    • /
    • pp.373-384
    • /
    • 2007
  • For structural health monitoring (SHM) of civil infrastructures, displacement is a good descriptor of the structural behavior under all the potential disturbances. However, it is not easy to measure displacement of civil infrastructures, since the conventional sensors need a reference point, and inaccessibility to the reference point is sometimes caused by the geographic conditions, such as a highway or river under a bridge, which makes installation of measuring devices time-consuming and costly, if not impossible. To resolve this issue, a visionbased real-time displacement measurement system using digital image processing techniques is developed. The effectiveness of the proposed system was verified by comparing the load carrying capacities of a steel-plate girder bridge obtained from the conventional sensor and the present system. Further, to simultaneously measure multiple points, a synchronized vision-based system is developed using master/slave system with wireless data communication. For the purpose of verification, the measured displacement by a synchronized vision-based system was compared with the data measured by conventional contact-type sensors, linear variable differential transformers (LVDT) from a laboratory test.

A Study on Feasibility of Dual-Channel 3DTV Service via ATSC-M/H

  • Kim, Byung-Yeon;Bang, Min-Suk;Kim, Sung-Hoon;Choi, Jin-Soo;Kim, Jin-Woong;Kang, Dong-Wook;Jung, Kyeong-Hoon
    • ETRI Journal
    • /
    • 제34권1호
    • /
    • pp.17-23
    • /
    • 2012
  • This paper analyzes the feasibility of a new 3DTV broadcasting service scenario via Advanced Television Systems Committee Mobile/Handheld (ATSC-M/H). We suggest a dual-channel system in which a left-view image is encoded by MPEG-2 with HD quality and a small-sized right-view image is encoded by AVC. Also, the left view is transmitted through ATSC main channel and the right view is transmitted through ATSC-M/H channel. Although the transport stream formats of two channels are different from each other, we demonstrate that it is possible for the ATSC 2.0 decoder to synchronize the display of the left and right views when both encoders use a common wall clock and time stamp. We also propose a program specific information descriptor which guarantees full compatibility with the conventional 2D HDTV and emerging mobile TV services. Finally, we provide the results of subjective visual quality assessment of the proposed system in support of its 3DTV service quality.

Post-Processing for JPEG-Coded Image Deblocking via Sparse Representation and Adaptive Residual Threshold

  • Wang, Liping;Zhou, Xiao;Wang, Chengyou;Jiang, Baochen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권3호
    • /
    • pp.1700-1721
    • /
    • 2017
  • The problem of blocking artifacts is very common in block-based image and video compression, especially at very low bit rates. In this paper, we propose a post-processing method for JPEG-coded image deblocking via sparse representation and adaptive residual threshold. This method includes three steps. First, we obtain the dictionary by online dictionary learning and the compressed images. The dictionary is then modified by the histogram of oriented gradient (HOG) feature descriptor and K-means cluster. Second, an adaptive residual threshold for orthogonal matching pursuit (OMP) is proposed and used for sparse coding by combining blind image blocking assessment. At last, to take advantage of human visual system (HVS), the edge regions of the obtained deblocked image can be further modified by the edge regions of the compressed image. The experimental results show that our proposed method can keep the image more texture and edge information while reducing the image blocking artifacts.

푸리에 변환과 Dense-SIFT를 이용한 비디오 기반 Face Spoofing 검출 (Video Based Face Spoofing Detection Using Fourier Transform and Dense-SIFT)

  • 한호택;박운상
    • 정보과학회 논문지
    • /
    • 제42권4호
    • /
    • pp.483-486
    • /
    • 2015
  • 얼굴 인식기반의 사용자 보안 시스템은 접근이 허가된 사용자의 사진이나 비디오를 이용한 공격에 취약하다는 단점을 가지고 있다. 본 연구에서는 인증되지 않은 사용자가 비디오를 이용하여 시스템에 접근할 경우 해당 공격 시도를 검출하기 위한 위변조(Spoof) 검출 방법을 제안한다. 제안하는 방법은 연속된 3개의 Frame에서 푸리에 변환과 Dense-SIFT 구분자를 사용하여 400개의 실제 및 위변조 비디오 영상을 대상으로 실험한 결과 99%의 검출 정확도를 보였다.

Fast Leaf Recognition and Retrieval Using Multi-Scale Angular Description Method

  • Xu, Guoqing;Zhang, Shouxiang
    • Journal of Information Processing Systems
    • /
    • 제16권5호
    • /
    • pp.1083-1094
    • /
    • 2020
  • Recognizing plant species based on leaf images is challenging because of the large inter-class variation and inter-class similarities among different plant species. The effective extraction of leaf descriptors constitutes the most important problem in plant leaf recognition. In this paper, a multi-scale angular description method is proposed for fast and accurate leaf recognition and retrieval tasks. The proposed method uses a novel scale-generation rule to develop an angular description of leaf contours. It is parameter-free and can capture leaf features from coarse to fine at multiple scales. A fast Fourier transform is used to make the descriptor compact and is effective in matching samples. Both support vector machine and k-nearest neighbors are used to classify leaves. Leaf recognition and retrieval experiments were conducted on three challenging datasets, namely Swedish leaf, Flavia leaf, and ImageCLEF2012 leaf. The results are evaluated with the widely used standard metrics and compared with several state-of-the-art methods. The results and comparisons show that the proposed method not only requires a low computational time, but also achieves good recognition and retrieval accuracies on challenging datasets.

Baggage Recognition in Occluded Environment using Boosting Technique

  • Khanam, Tahmina;Deb, Kaushik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권11호
    • /
    • pp.5436-5458
    • /
    • 2017
  • Automatic Video Surveillance System (AVSS) has become important to computer vision researchers as crime has increased in the twenty-first century. As a new branch of AVSS, baggage detection has a wide area of security applications. Some of them are, detecting baggage in baggage restricted super shop, detecting unclaimed baggage in public space etc. However, in this paper, a detection & classification framework of baggage is proposed. Initially, background subtraction is performed instead of sliding window approach to speed up the system and HSI model is used to deal with different illumination conditions. Then, a model is introduced to overcome shadow effect. Then, occlusion of objects is detected using proposed mirroring algorithm to track individual objects. Extraction of rotational signal descriptor (SP-RSD-HOG) with support plane from Region of Interest (ROI) add rotation invariance nature in HOG. Finally, dynamic human body parameter setting approach enables the system to detect & classify single or multiple pieces of carried baggage even if some portions of human are absent. In baggage detection, a strong classifier is generated by boosting similarity measure based multi layer Support Vector Machine (SVM)s into HOG based SVM. This boosting technique has been used to deal with various texture patterns of baggage. Experimental results have discovered the system satisfactorily accurate and faster comparative to other alternatives.

A New Image Enhancement Algorithm Based on Bidirectional Diffusion

  • Wang, Zhonghua;Huang, Xiaoming;Huang, Faliang
    • Journal of Information Processing Systems
    • /
    • 제16권1호
    • /
    • pp.49-60
    • /
    • 2020
  • To solve the edge ringing or block effect caused by the partial differential diffusion in image enhancement domain, a new image enhancement algorithm based on bidirectional diffusion, which smooths the flat region or isolated noise region and sharpens the edge region in different types of defect images on aviation composites, is presented. Taking the image pixel's neighborhood intensity and spatial characteristics as the attribute descriptor, the presented bidirectional diffusion model adaptively chooses different diffusion criteria in different defect image regions, which are elaborated are as follows. The forward diffusion is adopted to denoise along the pixel's gradient direction and edge direction in the pixel's smoothing area while the backward diffusion is used to sharpen along the pixel's gradient direction and the forward diffusion is used to smooth along the pixel's edge direction in the pixel's edge region. The comparison experiments were implemented in the delamination, inclusion, channel, shrinkage, blowhole and crack defect images, and the comparison results indicate that our algorithm not only preserves the image feature better but also improves the image contrast more obviously.

Learning-Based Multiple Pooling Fusion in Multi-View Convolutional Neural Network for 3D Model Classification and Retrieval

  • Zeng, Hui;Wang, Qi;Li, Chen;Song, Wei
    • Journal of Information Processing Systems
    • /
    • 제15권5호
    • /
    • pp.1179-1191
    • /
    • 2019
  • We design an ingenious view-pooling method named learning-based multiple pooling fusion (LMPF), and apply it to multi-view convolutional neural network (MVCNN) for 3D model classification or retrieval. By this means, multi-view feature maps projected from a 3D model can be compiled as a simple and effective feature descriptor. The LMPF method fuses the max pooling method and the mean pooling method by learning a set of optimal weights. Compared with the hand-crafted approaches such as max pooling and mean pooling, the LMPF method can decrease the information loss effectively because of its "learning" ability. Experiments on ModelNet40 dataset and McGill dataset are presented and the results verify that LMPF can outperform those previous methods to a great extent.

Shape Description and Retrieval Using Included-Angular Ternary Pattern

  • Xu, Guoqing;Xiao, Ke;Li, Chen
    • Journal of Information Processing Systems
    • /
    • 제15권4호
    • /
    • pp.737-747
    • /
    • 2019
  • Shape description is an important and fundamental issue in content-based image retrieval (CBIR), and a number of shape description methods have been reported in the literature. For shape description, both global information and local contour variations play important roles. In this paper a new included-angular ternary pattern (IATP) based shape descriptor is proposed for shape image retrieval. For each point on the shape contour, IATP is derived from its neighbor points, and IATP has good properties for shape description. IATP is intrinsically invariant to rotation, translation and scaling. To enhance the description capability, multiscale IATP histogram is presented to describe both local and global information of shape. Then multiscale IATP histogram is combined with included-angular histogram for efficient shape retrieval. In the matching stage, cosine distance is used to measure shape features' similarity. Image retrieval experiments are conducted on the standard MPEG-7 shape database and Swedish leaf database. And the shape image retrieval performance of the proposed method is compared with other shape descriptors using the standard evaluation method. The experimental results of shape retrieval indicate that the proposed method reaches higher precision at the same recall value compared with other description method.