• 제목/요약/키워드: desalination

검색결과 479건 처리시간 0.019초

태양열 해수담수화를 위한 증발식 MEMS(Multi-Effect-Multi-Stage)담수기 성능 실험 연구 (Experimental Study on Performance of MEMS(Multi-Effect-Multi-Stage) Distiller for Solar Thermal Desalination)

  • 주홍진;전용한;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제33권3호
    • /
    • pp.91-98
    • /
    • 2013
  • In this study, we have carried out development and performance evaluation of optimized MEMS(Multi-Effect-Multi-Stage) fresh water generator with $7m^2/day$ for solar thermal desalination system. The developed MEMS was composed of high temperature part and low temperature part. This arrangement has the advantage of increasing the availability of solar thermal energy. The MEMS consists of 2 steam generators, 5 evaporators, and 1 condenser. Tubes of heat exchanger used for steam generators, evaporators and condenser were manufactured by corrugated tubes. The performance of the MEMS was tested through in-door experiments, using an electric heater as heat source. The experimental conditions for each parameters were $20^{\circ}C$ for sea water inlet temperature to condenser, $8.16m^2$ /hour sea water inlet volume flow rate, $70^{\circ}C$ for hot water inlet temperature to generator of high temperature part, 3.6 4.8, 6.0 $m^2/hour$ for hot water inlet volume flow rate. As a result, The developed MEMS was required about 85 kW heating source to produce $7m^2/day$ of fresh water. It was analyzed that the performance ratio of MEMS was about 2.6.

Optimization of chemical cleaning for reverse osmosis membranes with organic fouling using statistical design tools

  • Park, Ki-Bum;Choi, Changkyoo;Yu, Hye-Weon;Chae, So-Ryong;Kim, In S.
    • Environmental Engineering Research
    • /
    • 제23권4호
    • /
    • pp.474-484
    • /
    • 2018
  • The cleaning efficiency of reverse osmosis (RO) membranes inevitably fouled by organic foulants depends upon both chemical (type of cleaning agent, concentration of cleaning solution) and physical (cleaning time, flowrate, temperature) parameters. In attempting to determine the optimal procedures for chemical cleaning organic-fouled RO membranes, the design of experiments concept was employed to evaluate key factors and to predict the flux recovery rate (FRR) after chemical cleaning. From experimental results and based on the predicted FRR of cleaning obtained using the Central Composite Design of Minitab 17, a modified regression model equation was established to explain the chemical cleaning efficiency; the resultant regression coefficient ($R^2$) and adjusted $R^2$ were 83.95% and 76.82%, respectively. Then, using the optimized conditions of chemical cleaning derived from the response optimizer tool (cleaning with 0.68 wt% disodium ethylenediaminetetraacetic acid for 20 min at $20^{\circ}C$ with a flowrate of 409 mL/min), a flux recovery of 86.6% was expected. Overall, the results obtained by these experiments confirmed that the equation was adequate for predicting the chemical cleaning efficiency with regards to organic membrane fouling.

축전식 탈염 시스템에서 전하량 제어를 통한 경도물질의 안정적인 탈염 (Stable Desalination of Hardness Substances through Charge Control in a Capacitive Deionization System)

  • 김윤태;최재환
    • 공업화학
    • /
    • 제30권4호
    • /
    • pp.472-478
    • /
    • 2019
  • 막 축전식 탈염(MCDI) 셀에 공급하는 총 전하(TC)를 조절하여 경도물질($Ca^{2+}$)을 안정하게 탈염할 수 있는 방법을 연구하였다. 흡착과정에서 TC를 변화시키면서 흡착(1.5 V)과 탈착(0.0 V)을 30회 반복하였다. 탈염과정에서 유출수의 농도와 pH, 흡착 및 탈착량, 전류밀도와 셀 전위의 변화를 분석하였다. MCDI 셀에 사용된 탄소전극의 최대허용전하(MAC)는 46 C/g로 측정되었다. MAC 이하의 TC (40 C/g)에서 운전한 결과 전극반응이 일어나지 않아 장기간 운전에서도 안정적인 탈염특성을 얻을 수 있었다. 반면, MAC 이상의 TC (50, 60 C/g)에서 운전한 경우 유출수의 농도와 pH가 크게 변하였다. 또한 전극반응으로 인해 전극표면에 스케일이 생성되어 셀의 전기저항이 점차 증가하였다. 이를 통해 흡착과정에서 MCDI 셀에 공급하는 전하를 제어함으로써 전극반응 없이 경도물질을 안정하게 제거할 수 있음을 확인하였다.

막증류 담수화를 위한 친수성/소수성 이중 표면 코팅 (Hydrophilic/Hydrophobic Dual Surface Coatings for Membrane Distillation Desalination)

  • 김혜원;이승헌;정성필;변지혜
    • 한국물환경학회지
    • /
    • 제38권3호
    • /
    • pp.143-149
    • /
    • 2022
  • Membrane distillation (MD) has emerged as a sustainable desalination technology to solve the water and energy problems faced by the modern society. In particular, the surface wetting properties of the membrane have been recognized as a key parameter to determine the performance of the MD system. In this study, a novel surface modification technique was developed to induce a Janus-type hydrophilic/hydrophobic layer on the membrane surface. The hydrophilic layer was created on a porous PVDF membrane by vapor phase polymerization of the pyrrole monomer, forming a thin coating of polypyrrole on the membrane walls. A rigid polymeric coating layer was created without compromising the membrane porosity. The hydrophilic coating was then followed by the in-situ growth of siloxane nanoparticles, where the condensation of organosilane provided quick loading of hydrophobic layers on the membrane surface. The composite layers of dual coatings allowed systematic control of the surface wettability of porous membranes. By the virtue of the photothermal property of the hydrophilic polypyrrole layer, the desalination performance of the coated membrane was tested in a solar MD system. The wetting properties of the dual-layer were further evaluated in a direct-contact MD module, exploring the potential of the Janus membrane structure for effective and low-energy desalination.

기수담수화와 전력 생산을 위한 폐루프형 압력 지연식 막 증류 공정의 성능 평가 (Performance Evaluation of a Closed-Loop Pressure Retarded Membrane Distillation for Brackish Water Desalination and Power Generation)

  • 조규상;이준서;박기호
    • Korean Chemical Engineering Research
    • /
    • 제60권4호
    • /
    • pp.525-534
    • /
    • 2022
  • 본 연구에서는 물과 전기의 동시 생산이 가능한 pressure retarded membrane distillation (PRMD)의 폐루프식 구성 디자인을 기수담수화에 적용해 최적 운전 조건과 성능 평가를 수행하였다. 시뮬레이션 결과 80 ℃ 이상의 폐열이 공급될 때 순 에너지 생산량이 양수 값을 보이며 90 ℃ 이상일 때 안정적인 전력 생산이 가능한 것을 확인할 수 있었고 최적 유입수 유량은 0.6 kg/s를 나타냈다. 이 조건에서 3 g/L의 기수가 유입될 때 순 에너지 생산량은 2.56 W/m2, 물 플럭스는 8.04 kg/m2/hr의 값을 나타냈다. 기수의 농도가 1-3 g/L로 변화할 때 물 플럭스나 에너지 생산량은 큰 변화가 나타나지 않았고, 해수가 유입수로 사용될 때와 비교하면 더 높은 물 플럭스와 순 에너지 생산량을 보였다. 이를 통해 에너지 생산이라는 측면에 집중한다면 기수를 사용해서 PRMD를 운전하는 것이 더 효율적이라는 것을 확인할 수 있었다.

막 축전식 탈염 공정의 성능 향상을 위한 강화 이온교환막 (Reinforced Ion-exchange Membranes for Enhancing Membrane Capacitive Deionization)

  • 신민규;송현비;강문성
    • 멤브레인
    • /
    • 제33권5호
    • /
    • pp.257-268
    • /
    • 2023
  • 막 축전식 탈염 공정(membrane capacitive deionization, MCDI)은 이온교환막을 다공성 전극과 함께 사용하여 탈염 효율을 향상시킬 수 있는 CDI 공정의 변형이다. 이온교환막은 MCDI의 성능에 큰 영향을 미치는 핵심 구성요소이다. 본 연구에서는 MCDI의 탈염 효율을 크게 향상시킬 수 있는 이온교환막의 최적 제조 인자를 도출하고자 하였다. 이를 위해 PE 다공성 필름의 세공에 단량체를 충진하고 in-situ 광중합을 진행하여 세공충진 이온교환막(pore-filled ion-exchange membranes, PFIEMs)을 제조하였다. 실험 결과, 제조된 PFIEMs은 다양한 탈염 및 에너지 변환 공정에 적용할 수 있는 수준의 우수한 전기화학적 특성을 나타내었다. 또한, MCDI 성능과 막 특성 인자와의 상관성 분석을 통해 막의 가교도를 제어하여 막의 전기적 저항이 충분히 낮은 범위에서 이온 선택 투과성을 최대화하는 것이 MCDI의 성능 향상을 위해 가장 바람직한 막제조 조건이라는 결론을 얻었다.

역삼투막을 이용한 해수담수화 플랜트에서 전처리 공정 기술 (An Overview of the Pretreatment Processes in Seawater Desalination Plants using Reverse Osmosis Membranes)

  • 안창훈;이원일;윤제용
    • 상하수도학회지
    • /
    • 제23권6호
    • /
    • pp.811-823
    • /
    • 2009
  • Seawater desalination process using a reverse osmosis (RO) membrane has been considered as one of the most promising technologies in solving the water scarcity problems in many arid regions around the world. To protect RO membrane in the process, a thorough understanding of the pretreatment process is particularly needed. Seawater organic matters (SWOMs) may form a gel layer on the membrane surface, which will increase a concentration polarization. As the SWOMs can be utilized as a substrate, membrane biofouling will be progressed on the RO membrane surface, resulting in the flux decline and increase of trans-membrane pressure drop and salt passage. In the middle of disinfection, an optimal chlorine dosage and neutralizer (sodium bisulfite, SBS) should be practiced to prevent oxidizing the surface of RO membranes. Additional fundamental research including novel non-susceptible biofouling membranes would be necessary to provide a guide line for the proper pretreatment process.

역삼투 담수시스템용 에너지회수장치의 손실극복 메커니즘 설계 (Design of Loss-reduction Mechanisms for Energy Recovery Devices in Reverse-osmosis Desalination systems)

  • 함영복;김영;노종호;신석신;박종호
    • 동력기계공학회지
    • /
    • 제16권3호
    • /
    • pp.5-9
    • /
    • 2012
  • Novel mechanisms for Energy Recovery Devices are proposed to diminish the pressure loss in the high-pressure reverse-osmosis system. In the beginning, the state-of-the-art in the design of Energy Recovery Devices is reviewed and the features of each model are investigated. The direct-coupled axial piston pump(APP) and axial piston motor(APM) showed 39% energy recovery at operating pressure of reverse osmosis desalination systems, 60 bar. Meanwhile, the developed PM2D model, in which APM pistons are arranged parallel to those of APP, is more compact and showed higher efficiency in a preliminary test. Loss-reduction mechanisms employing rod piston and double raw valve port are additionally proposed to enhance the efficiency and durability of the device.

Heat and mass transfer analysis in air gap membrane distillation process for desalination

  • Pangarkar, Bhausaheb L.;Sane, Mukund G.
    • Membrane and Water Treatment
    • /
    • 제2권3호
    • /
    • pp.159-173
    • /
    • 2011
  • The air gap membrane distillation (AGMD) process was applied for water desalination. The main objective of the present work was to study the heat and mass transfer mechanism of the process. The experiments were performed on a flat sheet module using aqueous NaCl solutions as a feed. The membrane employed was hydrophobic PTFE of pore size 0.22 ${\mu}m$. A mathematical model is proposed to evaluate the membrane mass transfer coefficient, thermal boundary layers' heat transfer coefficients, membrane / liquid interface temperatures and the temperature polarization coefficients. The mass transfer model was validated by the experimentally and fitted well with the combined Knudsen and molecular diffusion mechanism. The mass transfer coefficient increased with an increase in feed bulk temperature. The experimental parameters such as, feed temperature, 313 to 333 K, feed velocity, 0.8 to 1.8 m/s (turbulent flow region) were analyzed. The permeation fluxes increased with feed temperature and velocity. The effect of feed bulk temperature on the boundary layers' heat transfer coefficients was shown and fairly discussed. The temperature polarization coefficient increased with feed velocity and decreased with temperature. The values obtained were 0.56 to 0.82, indicating the effective heat transfer of the system. The fouling was observed during the 90 h experimental run in the application of natural ground water and seawater. The time dependent fouling resistance can be added in the total transport resistance.

Desalination of geothermal water by membrane distillation

  • Gryta, M.;Palczynski, M.
    • Membrane and Water Treatment
    • /
    • 제2권3호
    • /
    • pp.147-158
    • /
    • 2011
  • Membrane distillation process was used for desalination of hot (333 K) geothermal water, which was applied in the plant producing heating water. The investigated water contained 120 g salts/$dm^3$, mainly NaCl. The mineral composition was studied using an ion chromatography method. The obtained rejection of solutes was closed to 100%, but the small amounts of $NH_3$ also diffused through the membrane together with water vapour. However, the composition of obtained distillate allowed to use it as a makeup water in the heating water system. The geothermal water under study was concentrated from 120 to 286 g NaCl/$dm^3$. This increase in the solution concentration caused the permeate flux decline by a 10-20%. The geothermal water contained sulphates, which was subjected to two-fold concentration to achieve the concentration 2.4-2.6 g $SO{_4}{^{2-}}/dm^3$ and the sulphates then crystallized in the form of calcium sulphate. As a results, an intensive membranes scaling and the permeate flux decline was observed. The XRD analysis indicated that beside the gypsum also the NaCl crystallites were deposited on the membrane surfaces. The fresh geothermal water dissolved the mixed $CaSO_4$ and NaCl deposit from the membrane surface. This property can be utilized for self-cleaning of MD modules. Using a batch feeding of MD installation, the concentration of geothermal water was carried out over 800 h, without significant performance losses.