• 제목/요약/키워드: depth of interaction

검색결과 847건 처리시간 0.03초

The Impact of Water Depth and Speed on Lower Muscles Activation During Exercise in Different Aquatic Environments

  • Gyu-sun, Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권2호
    • /
    • pp.169-178
    • /
    • 2024
  • This study aimed to investigate the effects of water depth and speed on the activation of lower muscles during squat exercises, utilizing electromyography(EMG). It involved ten male participants in there. Participants performed 30 squats over a minute at a speed of 60bpm and maximum speed squats until exhaustion within a minute. The Integrated electromyography(iEMG) readings for the rectus femoris showed statistically significant differences due to water depth and speed, with a significant interaction effect between depth and speed during squat exercises. The iEMG readings for the biceps femoris also showed statistically significant differences, with a significant interaction effect between depth and speed during squat exercises. The iEMG readings for the gastrocnemius showed statistically significant differences according to water depth and speed. However, the interaction effect of water depth and speed during squat exercises did not show a statistically significant difference. In contrast, the iEMG readings for the tibialis anterior demonstrated statistically significant differences, with a statistically significant interaction effect during squats. These findings suggest that water depth and speed positively influence the activation patterns of lower muscles. Therefore, appropriately tailored aquatic exercises based on water depth for individuals with musculoskeletal discomfort, including the elderly or those with physical impairments, can effectively reduce physical strain and enhance balance, as well as physical and perceptual aspects. It is concluded that such exercises could provide a safer and more effective method of exercise compared to ground-based alternatives.

Numerical analysis for hydrodynamic interaction effects between vessel and semi-circle bank wall

  • Lee, Chun-Ki;Moon, Serng-Bae;Oh, Jin-Seok;Lee, Sang-Min
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권4호
    • /
    • pp.691-698
    • /
    • 2015
  • The hydrodynamic interaction forces and moments induced by the vicinity of bank on a passing vessel are known as wall effects. In this paper, the characteristics of interaction acting on a passing vessel in the proximity of a semi-circle bank wall are described and illustrated, and the effects of ship velocity, water depth and the lateral distance between vessel and semi-circle bank wall are discussed. For spacing between ship and semi-circle bank wall (SP) less than about 0.2 L and depth to ship's draft ratio (h/d) less than around 2.0, the ship-bank interaction effects increase steeply as h/d decreases. However, for spacing between ship and semi-circle bank wall (SP) more than about 0.3 L, the ship-bank interaction effects increase slowly as h/d decreases, regardless of the water depth. Also, for spacing between ship and semi-circle bank wall (SP) less than about 0.2 L, the hydrodynamic interaction effects acting on large vessel increase largely as ship velocity increases. In the meantime, for spacing between ship and semi-circle bank wall ($S_P$) more than 0.3 L, the interaction effects increase slowly as ship velocity increases.

증강현실 기반의 공간 상호작용을 위한 깊이 카메라 적용 (Introducing Depth Camera for Spatial Interaction in Augmented Reality)

  • 윤경담;우운택
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.62-67
    • /
    • 2009
  • 기존의 증강현실 기반 상호작용 기법은 상호작용 주체의 원활한 추적을 위해 마커 기반의 패들이나 데이터 글러브 등의 부가적인 입력장치에 의존하거나 제한적인 3차원 입력만을 허용하는 경우가 많았다. 본 논문에서는 대상 개체 주변 공간의 물리적 점유를 감지하여 사용자의 입력을 해석하는 비접촉식 수동형 공간 상호작용 기법을 제안한다. 제안된 방법은 깊이 카메라로 구성한 증강현실 환경에 가상의 공간 센서를 배치하여 사용자의 입력을 공간적으로 해석한다. 그 결과, 부가적인 입력장치의 착용이 필요하지 않으며, 입력 형태에 대한 제약을 최소화하고, 증강된 영상 내의 상호작용 객체 간에 정확한 거리감을 제시한다. 향후 이러한 기법은 미니어쳐 AR 시스템과 같은 동적 콘텐츠 전시 플랫폼의 인터페이스에 적용될 것으로 기대된다.

  • PDF

Study on lateral behavior of digging well foundation with consideration of soil-foundation interaction

  • Wang, Yi;Chen, Xingchong;Zhang, Xiyin;Ding, Mingbo;Lu, Jinhua;Ma, Huajun
    • Geomechanics and Engineering
    • /
    • 제24권1호
    • /
    • pp.15-28
    • /
    • 2021
  • Digging well foundation has been widely used in railway bridges due to its good economy and reliability. In other instances, bridges with digging well foundation still have damage risks during earthquakes. However, there is still a lack of knowledge of lateral behavior of digging well foundation considering the soil-foundation interaction. In this study, scaled models of bridge pier-digging well foundation system are constructed for quasi-static test to investigate their lateral behaviors. The failure mechanism and responses of the soil-foundation-pier interaction system are analyzed. The testing results indicate that the digging foundations tend to rotate as a rigid body under cyclic lateral load. Moreover, the depth-width ratio of digging well foundation has a significant influence on the failure mode of the interaction system, especially on the distribution of foundation displacement and the failure of pier. The energy dissipation capacity of the interaction system is discussed by using index of the equivalent viscous damping ratio. The damping varies with the depth-width ratio changing. The equivalent stiffness of soil-digging well foundation-pier interaction system decreases with the increase of loading displacement in a nonlinear manner. The absolute values of the interaction system stiffness are significantly influenced by the depth-width ratio of the foundation.

선박에 작용하는 측벽영향에 관한 실험적 연구 (An Experimental Study on Ship-Bank Hydrodynamic Interaction Forces)

  • 이춘기
    • 한국항해항만학회지
    • /
    • 제37권3호
    • /
    • pp.251-256
    • /
    • 2013
  • This paper is mainly concerned with the ship-bank interaction by model test. The experiments for the characteristics of hydrodynamic interaction forces and moments between vessel and bank with a mound were carried out in the seakeeping and maneuvering basin. A series of tests were carried out with ship model in parallel course along a vertical sidewall with a mound with varying lateral spacing between model ship and sidewall, length of sidewall and water depth. From the experimental results, it indicated that the hydrodynamic interaction effects increase as length of sidewall with a mound increases. Furthermore, for lateral spacing less than about 0.2L between vessel and bank, it can be concluded that the bank effects increase largely as the lateral spacing between vessel and bank decreases. However, for spacing between vessel and bank more than about 0.3L, the interaction effects increase slowly as lateral spacing decreases. Also, for the water depth to draft ratio(h/d) less than about 1.5, the hydrodynamic interaction effects increase dramatically as h/d decreases.

빙쇄굴 모델에 의한 극지 해저 파이프라인의 매설깊이 산정 (Estimation of burial depth for arctic offshore pipelines by an ice scour model)

  • 윤기영;최경식
    • 한국해양공학회지
    • /
    • 제11권2호
    • /
    • pp.1-10
    • /
    • 1997
  • The interaction of ground ice features with underlying seabed is one of the major considerations in the design of Arctic pipeline systems. Regarding the development of offshore gas field near Sakhalin Island, which is an ice-infested area, in this paper an ice scour model to determine the burial depth of Arctic offshore pipeline is studied. Using a simplified ice-seabed interaction process, ice scour depth is easily estimated. This nonlinear numerical model can simulate the scouring process for various enviromental parameters such as ice mass, incoming velocity, soil strength. This study also deals with interaction forces during the scouring process in sloping seabed conditions and discusses the ice loads that are transmitted through the seabed soil.

  • PDF

휴반용 분무기의 Nozzle에 관한 연구(III) (A Study on the Wide Reach Nozzle of Sprayer (III))

  • 원장우
    • 한국농공학회지
    • /
    • 제15권4호
    • /
    • pp.3147-3152
    • /
    • 1973
  • The factors to influence the travelling distance of sprayed particles for the medium range nozzle may by the groove depth of swirl plate, the cap slope, the diameter of cap hole, and pressure. 1. This study was conducted to examine Interaction effects among four factors to the travelling distance. The results of this study are summarized as followa; a) Interaction effects among four factors the groove depth(G), cap slope(C), diameter of cap hole(D), and pressure (P), were significant to influence the travelling distance except for $G{\times}P,\;C{\times}D{\times}P\;and\;G{\times}C{\times}D{\times}P$. b) Interaction effects with the pressure were very smaller than interaction effects among the other factors. c) Effect of change of the groove depth of swirl plate on the travelling distance of sprayed particles was generally a linear, the increasing rate of the change was about 0.345, which was very significant. d) Effect of change of cap slope on the travelling distance was generally a linear or a dull quadratic, the increasing rate was very small. e) Main effect of change of cap slope in the medium range nozzle was very smaller than that of the close range nozzle on the travelling distance, which was estimated by the changing of turning radius of flowing course in nozzle. f) Interaction effect between two factors in the medium range nozzle was more significant than that of the close range nozzle on the travelling distance.

  • PDF

원자로에서 중대사고시 냉각수의 수심과 용융물 성분이 증기폭발에 미치는 영향 (The Influence of Water Depth and Melt Composition on a Steam Explosion in Severe Accidents in a Nuclear Reactor)

  • 김종환;박익규;홍성완;민병태;송진호;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.414-419
    • /
    • 2003
  • In the recent TROI experiments, melts of zirconia and two different compositions of corium were used to observe the occurrence of a steam explosion when it came into contact with water at two different depths. The compositions of the corium were 70 : 30 and 80 : 20 in weight percent of $UO_{2}$ and $ZrO_{2}$, and the mass of the corium was about 10kg. The depth of water in the interaction vessel was 67cm and 130cm. A steam explosion did not occur in the interaction between 80 : 20 corium melt and water at 130cm depth, while steam spikes were observed in the interactions between corium melts of two different compositions and water at 67cm depth. A strong steam explosion occurred in the interaction between 5.43kg of zirconia melt and water at 67cm depth. This fact shows that the explosivity of zirconia is much greater than that of corium.

  • PDF

Road Traffic Control Gesture Recognition using Depth Images

  • Le, Quoc Khanh;Pham, Chinh Huu;Le, Thanh Ha
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제1권1호
    • /
    • pp.1-7
    • /
    • 2012
  • This paper presents a system used to automatically recognize the road traffic control gestures of police officers. In this approach,the control gestures of traffic police officers are captured in the form of depth images.A human skeleton is then constructed using a kinematic model. The feature vector describing a traffic control gesture is built from the relative angles found amongst the joints of the constructed human skeleton. We utilize Support Vector Machines (SVMs) to perform the gesture recognition. Experiments show that our proposed method is robust and efficient and is suitable for real-time application. We also present a testbed system based on the SVMs trained data for real-time traffic gesture recognition.

  • PDF

Numerical study of hydrodynamic interaction on a vessel in restricted waterways

  • Lee, Chun-Ki
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2012
  • The hydrodynamic interaction between ship and bank can't be neglected when a vessel is app- roached toward the tip of a wedge-shaped bank in restricted waterways, such as in a harbor, near some fixed obstacles, or in a narrow channel. In this paper, the characteristic features of the hydrodynamic interaction acting on a slowly moving vessel in the proximity of a wedge-shaped bank are described and illustrated, and the effects of water depth and the spacing between ship and wedge-shaped bank are summarized and discussed based on the slender body theory. From the theoretical results, it indicated that the hydrodynamic interactions decrease as wedge-shaped bank of angle ${\beta}$ in-creases. For water depth to draft ratio less than about 2.0, the hydrodynamic interactions between ship and bank in-crease sharply as h/d decreases, regardless of the wedge-shaped bank of angle ${\beta}$. Also, for lateral separation more than about 0.2L between ship and wedge-shaped bank, it can be concluded that the bank effects decrease largely as the separation increases.