• Title/Summary/Keyword: depth of anesthesia

Search Result 93, Processing Time 0.021 seconds

Diagnostic Accuracy and Safety of Medical Thoracoscopy (내과적 흉강경 검사의 진단적 유용성과 안전성)

  • Yang, Jung Kyung;Lee, Jung-Ho;Kwon, Mi-Hye;Jeong, Ji Hyun;Lee, Go Eun;Cho, Hyun Min;Kim, Young Jin;Jung, Sung Mee;Choi, Eu Gene;Son, Ji Woong;Na, Moon Jun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.63 no.3
    • /
    • pp.261-267
    • /
    • 2007
  • Background: The causes of the pleural effusion are remained unclear in a the substantial number of patients with exudative effusions determined by an examination of the fluid obtained via thoracentesis. Among the various tools for diagnosing exudative pleural effusions, thoracoscopy has a high diagnostic yield for cancer and tuberculosis. Medical thoracoscopy can also be carried out under local anesthesia with mild sedation. The aim of this study was to determine diagnostic accuracy and safety of medical thoracoscopy. Methods: Twenty-five patients with exudative pleural effusions of an unknown cause underwent medical thoracoscopy between October 2005 and September 2006 in Konyang University Hospital. The clinical data such as age, gender, preoperative pulmonary function, amounts of pleural effusion on lateral decubitus radiography were collected. The vital signs were recorded, and arterial blood gas analyses were performed five times during medical thoracoscopy in order to evaluate the cardiopulmonary status and acid-base changes. Results: The mean age of the patients was 56.8 years (range 22-79). The mean depth of the effusion on lateral decubitus radiography (LDR) was 27.49 mm. The medical thoracoscopic pleural biopsy was diagnostic in 24 patients (96.0%), with a diagnosis of tuberculosis pleurisy in 9 patients (36%), malignant effusions in 8 patients (32%), and parapneumonic effusions in 7 patients (28%). Medical thoracoscopy failed to confirm the cause of the pleural effusion in one patient, who was diagnosed with tuberculosis by a pericardial biopsy. There were no significant changes in blood pressure, heart rate, acid-base and no major complications in all cases during medical thoracoscopy (p>0.05). Conclusions: Medical thoracoscopy is a safe method for patients with unknown pleural effusions with a relatively high diagnostic accuracy.

A Short-Term Study of the Effects of UDCA on Gingival Inflammation in the Beagle Dog (우로수데옥시콜릭산이 치주질환 억제에 미치는 영향)

  • Park, Sang-Hyun;Han, Seoung-Min;Choi, Sang-Mook;Ku, Young;Rhyu, In-Chul;Han, Soo-Boo;Lee, Hak-Mo;Kim, Moon-Moo;Kim, Sang-Nyun;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.1
    • /
    • pp.1-14
    • /
    • 1999
  • Ursodeoxycholic acid(UDCA) is a hydrophilic gall bladder acid and has been used as a effective drug for liver disease related to in1munity. This drug inhibits secretions of IL-2, IL-4, and $IFN-{\gamma}$ from T-cells and production of immunoglobulin from B-cells. Also it has been reported that UDCA inhibits production of IL-1 related to the progression of periodontal disease and activation of collagenases. The purpose of the present study was to elucidate the effects of UDCA on inhibition of periodontal disease progression using clinical, microbiological and histometrical parameters. Twelve pure bred, 16 month-old-beagle dogs were used in the study. After ligature-induced periodontal diseases were formed, experimental drugs were applied twice a day and then the results of clinical, microbiological, and histometrical parameters were measured at baselie(initiation of experiment) , 4weeks and 8weeks. The gel with UDCA(concentration 0.5%, 5% 3 dogs in each) was applied to experimental group, chlorhexidine to positive control group(3dogs) and the gel without UDCA(base) to negative control group. After induction of general anesthesia, the maxillary 2nd, 3rd premolars and 1st molar and the mandibular 2nd, 3rd, 4th premolars and 1st molar were ligated in one side selected randomly and were not ligated in the opposite side. The plaque index(PI), gingival index(GI), pocket depth(PD) and gingival crevicular fluid(GCF) volum were measured clinically. The PI and GI were measured at 3 buccal points of all experimental teeth and the GCF was measured only at the 3rd premolar in the maxilla and the 4th premolar in the mandible. In the microbiological study, the samples extracted from the 3rd premolar of the maxilla and the 4th premolar of the mandible at the center of buccal surface were analyzed aerobics, anaerobics and Streptococcus colony forming units, After clinical and microbiological examination at 8weeks, the dogs were sacrificed by carotid artery perfusion. The samples were fixed and sectioned including interproximal area, and the distance from cementoenamel junction(CEJ) to alveolar crest was measured. The results were that PI, GI and PD increased until 4 weeks and decreased at 8 weeks in three groups but the differences between all the groups were not significant. The 0.5% UDCA in non-ligated group showed remarkable decrease of GCF. The experimental group applied 5% UDCA decreased the number of aerobics and anaerobics. The distance from CEJ to alveolar crest was greater in the negative control group on both ligated and non-ligated sides, but the differences were not significant stastically.

  • PDF

Immunocytochemical Localization of Parvalbumin and Calbindin-D 28K in Monkey Dorsal Lateral Geniculate Nucleus (원숭이 외측슬상체배측핵에서 칼슘결합단백 Parvalbumin과 Calbindin-D 28K의 분포)

  • Ko, Seung-Hee;Bae, Choon-Sang;Park, Sung-Sik
    • Applied Microscopy
    • /
    • v.24 no.4
    • /
    • pp.61-77
    • /
    • 1994
  • The calcium-binding proteins (CaBP), parvalbumin (PV) and calbindin-D 28K (calbindin) are particularly abundant and specific in their distribution, and present in different subsets of neurons in many brain regions. Although their physiological roles in the neurons have not been elucidated, they are valuable markers of neuronal subpopulations for anatomical and developmental studies. This study is designed to characterize dorsal lateral geniculate nucleus (dLGN) neurons and axon terminals in terms of differential expression of immunoreactivity (IR) for two well-known CaBPs, PV and calbindin. The experiments were carried out on 6 adult monkeys. Monkeys were perfused under deep Nembutal anesthesia with 2% paraformaldehyde and 0.2% glutaraldehyde in 0.1M phosphate buffer. After removal, the brains were postfixed for 6-8 hr in 2% paraformaldehyde at $4^{\circ}C$ and infiltrated with 30% sucrose at $4^{\circ}C$. Thereafter, they were frozen in dry ice. Serial sections of the thalamus, at $20{\mu}m$, were made in the frontal plane with a sliding microtome. The sections were stained for PV and calbindin with indirect immunocytochemical methods. For electron microscopy, after infiltration with 30% sucrose the blocks of thalamus were serially sectioned at $50{\mu}m$ with a Vibratome in the coronal plane and stained immediately by indirect ABC methods without Triton X-100 in incubation medium. Stained sections were postfixed in 0.2% osmium tetroxide, dehydrated and flat-embedded in Spurr resin. The block was then trimmed to contain only a selected lamina or interlaminar space. The dLGN proper showed strong PV IR in fibers in all laminae and interlaminar zones. Particularly dense staining was noted in layers 1 and 2 that contain many stained fibers from optic tract. Neuronal cell body stained with PV was concentrated only in the laminae. In these laminae staining was moderate in cell bodies of all large and medium-sized neurons, and was strong in cell bodies of some small neurons together with their processes. Calbindin IR was marked in the neuronal cell body and neuropil in the S layers and interlaminar zones whereas moderate in the neuropil throughout the nucleus. Regional difference in distribution of PV and calbindin IR cell is distinct; the former is only in the laminae and the latter in both the S layer and interlaminar space. The CaBP-IR elements were confined to about $10{\mu}m$ in depth of Vibratome section. The IR product for CaBP was mainly associated with synaptic vesicle, pre- and post-synaptic membrane, and outer mitochondrial membrane and along microtubule. PV-IR was noted in various neuronal elements such as neuronal soma, dendrite, RLP, F, PSD and some myelinated or unmyelinated axons, and was not seen in the RSD and glial cells. Only a few neuronal components in dLGN was IR for calbindin and its reaction product was less dense than that of PV, and scattered throughout cytoplasm of soma of some relay neurons, and was also persent in some dendrite, myelinated axons and RLP. The RSD, F, PSD and glial elements were always non-IR for calbindin. Calbindin labelled RLP were presynaptic to unlabeled dendrite or dendritic spine and PSD. Calbindin-labeled dendrite of various sizes were always postsynaptic to unlabeled RSD, RLP or F. From this study it is suggested that dLGN cells of different functional systems and their differential projection to the visual cortex can be distinguished by differential expression of PV and calbindin.

  • PDF