• 제목/요약/키워드: depth level

검색결과 2,644건 처리시간 0.031초

Electroencephalographic Correlation Dimension Changes with Depth of Halothane

  • Lee, Maan-Gee;Park, Eun-Ju;Choi, Jung-Mee;Yoon, Moon-Han
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권5호
    • /
    • pp.491-499
    • /
    • 1999
  • This study was designed to evaluate the efficacy of dynamic parameters, such as correlation dimension $D_2,$ by comparing spectral electroencephalographic (EEG) parameters. These parameters are used to estimate the depth of halothane anesthesia as defined by the presence of body movement in response to a tail clamp. Six rats were used and each of them was exposed to halothane sequentially at the concentrations of 0%, 0.5%, 1.0% and 1.5% for 30 min. A tail clamp was applied every five min and the movements were recorded at each concentration level. The spectral parameters and the dynamic parameters were derived from 20-sec and 10-sec segments, respectively, from the last 5-mins of EEG recording at each concentration level. Correlation coefficients between the parameters and the movements were calculated. Standardized values of three parameters, betaL power, median power frequency (MPF), and $D_2$ were derived by calculation based on the number of animals showing the movement in response to a tail clamp. The betaL power had the largest correlation coefficient to spontaneous movement and to the response to a tail clamp than any other band parameter. MPF had a better correlation with the movement than 90% spectral edge frequency. Among the dynamic parameters, $D_2$ on the parietal cortex had a better correlation with the movement. The level of deviation and variation of standardized $D_2,$ MPF, and betaL were significant (p<0.01). The order of deviation and variation was; betaL power > MPF > $D_2.$ The correlation dimension serves as a better index for the depth of halothane anesthesia defined in forms of a response to external stimulation.

  • PDF

물리탐사 결과 복합해석을 통한 방조제 제체 정밀안전진단 사례 (Case History for Safe Diagnosis of Embankment Dike using Composite Analysis of Various Geophysical surveys)

  • 송성호;성백욱;김영규;강미경;이규상;김양빈
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2007년도 공동학술대회 논문집
    • /
    • pp.107-112
    • /
    • 2007
  • To establish the reinforce region and technique through the embankment dike after identifying the region of seawater inflow, we carried out small-loop electromagnetic (EM) survey, electrical resistivity survey and refraction seismic method. We also analyzed the distribution of electrical conductivity in reservoir with depth every two month and monitored water level variations with tidal variation in four observation wells located at seaside and reservoir side in order to analyze the relationship with survey results. From both the cross-correlation between tidal and water level variation at four wells and the distribution of electrical conductivity in reservoir with depth, the major portion of seawater inflow are identified through the embankment dike. From electromagnetic and electrical resistivity survey results, it was found that the seawater inflow were happened through several small regions at seaside and became wider near reservoir side. The 2-D inversion sections of refraction seismic method showed that the pebble-bearing sand layer is spread over the whole region with two to four width. From the this study, small-loop EM, electrical resistivity and refraction seismic surveys accompany with the distribution of electrical conductivity in reservoir with depth and the monitoring results for water level variations are revealed to be effective to identify seawater inflow pathway through embankment dike and to establish the reinforce region and technique through the embankment dike.

  • PDF

동일 기종 선형가속기간 8 MV 광자선에 대한 빔 매칭 정확도 평가 (Evaluation of Beam-Matching Accuracy for 8 MV Photon Beam between the Same Model Linear Accelerator)

  • 김연래;정진범;강성희
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권2호
    • /
    • pp.105-114
    • /
    • 2020
  • This study aimed to assess of beam-matching accuracy for an 8 MV beam between the same model linear accelerators(Linac) commissioned over two years. Two models were got the customer acceptance procedure(CAP) criteria. For commissioning data for beam-matched linacs, the percentage depth doses(PDDs), beam profiles, output factors, multi-leaf collimator(MLC) leaf transmission factors, and the dosimetric leaf gap(DLG) were compared. In addition, the accuracy of beam matching was verified at phantom and patient levels. At phantom level, the point doses specified in TG-53 and TG-119 were compared to evaluate the accuracy of beam modelling. At patient level, the dose volume histogram(DVH) parameters and the delivery accuracy are evaluated on volumetric modulated arc therapy(VMAT) plan for 40 patients that included 20 lung and 20 brain cases. Ionization depth curve and dose profiles obtained in CAP showed a good level for beam matching between both Linacs. The variations in commissioning beam data, such as PDDs, beam profiles, output factors, TF, and DLG were all less than 1%. For the treatment plans of brain tumor and lung cancer, the average and maximum differences in evaluated DVH parameters for the planning target volume(PTV) and the organs at risk(OARs) were within 0.30% and 1.30%. Furthermore, all gamma passing rates for both beam-matched Linacs were higher than 98% for the 2%/2 mm criteria and 99% for the 2%/3 mm criteria. The overall variations in the beam data, as well as tests at phantom and patient levels remains all within the tolerance (1% difference) of clinical acceptability between beam-matched Linacs. Thus, we found an excellent dosimetric agreement to 8 MV beam characteristics for the same model Linacs.

표준화된 화상 모델에서 화상 후 첫 24시간 내의 화상 깊이의 변화 (The Change of Burn Depth within 24 Hours after Burn in the Standardized Burn Model)

  • 손대구;최태현;권선영
    • Archives of Plastic Surgery
    • /
    • 제35권4호
    • /
    • pp.373-378
    • /
    • 2008
  • Purpose: In full thickness burn, the depth of burn is known to increase until around 1-3 days after the burn. However, no study on how the depth increase during the first 24 hours has been conducted. Therefore, the authors investigated how the depth of burn changes within the first 24 hours after the burn by using the standardized burn model. Methods: A total of four experiments on pigs were carried out for this study. Experiment 1 was performed to examine how temperature affects the depth of burn. The digitally controlled aluminum thermal block was set at different temperatures-80, 90 and 100 degrees in Celsius, respectively. Then the pig was exposed to the block for 15 seconds each time. The time exposed to heat was set as a variable for the Experiment 2. The temperature was maintained at 80 degrees Celsius, and the pig was contacted with the thermal block for 5, 10 and 20 seconds, respectively. The biopsy of the tissues were performed in one hour, 6 hours, 24 hours, and 7 days after the burn. After hematoxylin and eosin staining a percentage of the depth from a basement membrane of epidermis to the deepest tissue damaged by the burn against total dermal thickness was measured. Results: In Experiment 1, the depth of burn increased considerably as time passed by. At all three temperatures, differences in depths measured in 6 and 24 hours, and in 1 hour and 7 days were both significant. In addition, the depth deepened as the temperature went higher. In the case of Experiment 2, the depth of burn also increased significantly as time passed by. At all three times, differences in depth measured in 6 and 24 hours, and in 1 hour and 7 days were also significant. Moreover, the depth extended with longer contact time when it was compared according to the time. Conclusion: Full thickness burn progressed rapidly from 6 to 24 hours after the burn and the depth of burn was almost decided within the first 24 hours after the burn. On the other hand, partial thickness burn also advanced from 6 to 24 hours after the burn but the depth deepened at slower level.

저전력 기술 매핑을 위한 논리 게이트 재합성 (Resynthesis of Logic Gates on Mapped Circuit for Low Power)

  • 김현상;조준동
    • 전자공학회논문지C
    • /
    • 제35C권11호
    • /
    • pp.1-10
    • /
    • 1998
  • 휴대용 전자 시스템에 대한 deep submicron VLSI의 출현에 따라 기존의 면적과 성능(지연시간)외에 전력량 감축을 위한 새로운 방식의 CAD 알고리즘이 필요하게 되었다. 본 논문은 논리합성시 기술매핑 단계에서의 전력량 감소를 목적으로 한 논리 게이트 분할(gate decomposition)을 통한 재합성 알고리즘을 소개한다. 기존의 저전력을 위한 논리분할 방식은 Huffman 부호화 방식을 이용하였으나 Huffman code는 variable length를 가지고 있으며 logic depth (회로지연시간)와 글리치에 영향을 미치게 된다. 제안된 알고리즘은 임계경로상에 있지 않은 부회로에 대한 스위칭 동작량을 줄임으로써 logic depth (즉 속도)를 유지하면서 다양한 재구성된 트리를 제공하여 스위칭 동작량을 줄임으로써 전력량을 감축시키는 새로운 게이트분할 알고리즘을 제안한다. 제안된 알고리즘은 zero 게이트 지연시간을 갖는 AND 트리에 대하여 스위칭 동작량이 최소화된 2진 분할 트리를 제공한다. SIS (논리합성기)와 Level-Map (lower power LUT-based FPGA technology mapper)과 비교하여 각각 58%와 8%의 전력 감축효과를 보였다.

  • PDF

Coralline Based Porous Hydroxyapatite와 Coralline Based Calcium Carbonate의 이식후 치조골내결손부에 대한 임상적 평가 (CLINICAL EVALUATION OF CORALLINE BASED POROUS HYDROXYAPATITE AND CORALLINE BASED CALCIUM CARBONATE IN HUMAN INTRABONY PERIODONTAL LESIONS)

  • 심정민;손성희;한수부
    • Journal of Periodontal and Implant Science
    • /
    • 제24권1호
    • /
    • pp.120-130
    • /
    • 1994
  • The purpose of the present investigation was to compare the effectiveness of porous hydroxyapatite (PHA) and coralline based porous calcium carbonate(PCC) as implant materials in human periodontal osseous defects. 10 adult patients having periodontitis and 2 similar angular osseous defects ${\ge}$5mm as verified by radiographic analysis and clinical probing depth ${\ge}$4mm were selected. The measurements were recorded just before surgery and after 6 month. Clinical parameters used in this study included gingival recession, pocket depth, probing attachment level, Sulcus Bleeding Index, Plaque Index, tooth mobility and bone defect depth measurements. After initial therapy, patients were treated with mucoperiosteal flap surgery. The contralateral bony defects in each patient randomly assigned to either bone graft material, one with PHA(Interpore 200) and the other with coralline based calcium carbonate(Biocoral). After 6 month both groups showed statistically significant reduction of pocket depth, Sulcus Bleeding Index, Plaque Index and significant improvement in probing attachment level. No statistically significant differences were found between the groups. There were 3.0mm or 68% of bone repair with PHA and 3.1mm, 61% with PCC. These values were likewise not significantly different. The data and clinical impression strongly suggest that both PHA and PCC are alloplastic implants with clinically apparent acceptance by the soft and hard tissue and that they can be used as bone graft materials successfully.

  • PDF

석굴암의 돌은 말한다: 석불사 석굴의 건축 평면과 벽면 설계 (The Stones of Seokguram Speak: Floor Plan and Wall Design of Seokbulsa Grotto)

  • 윤재신
    • 건축역사연구
    • /
    • 제29권1호
    • /
    • pp.21-37
    • /
    • 2020
  • The purpose of this paper is to reconstruct the original floor plan and wall design of Seokbulsa Grotto in Kyungju; commonly known as 'Seokguram'. The paper presents an array of dimensional studies of the existing Seokguram to examine its architectural form, and infers the original floor plan and wall design of Seokbulsa Grotto. Seokbulsa Grotto is designed as a system of 'coherent modules' and was constructed using the dry stone method, which interlocks large stone modules into a whole that becomes the load-bearing structure itself. The design principles governing Seokbulsa Grotto are the spatial axis of symmetry, modular coordination, and the layout grid of a quarter Tang-Ruler(TR: 唐尺). Dimensional studies were conducted with these governing principles in mind and concludes the following about the original floor plan design. In the main chamber, Ansang-stone's radius is 12 TR, and Flagstone's radius is 12¼ TR. In the front chamber, the width between the two Ansang-stones facing each other is 22 TR and the longitudinal space depth is 12 TR, while the width between the two Flagstones facing each other is 22½ TR and Flagstone's depth is 12 TR. In the passageway, the width between the two Ansang-stones facing each other is 11½ TR and longitudinal space depth is 9 TR, while the width between the two Flagstones facing each other is 12 TR and Flagstone's depth is 7¾ TR. The distance from the center to the entrance line of the main chamber is 10½ TR. Therefore, the total longitudinal length of the Grotto is 43½ TR at the level of the Ansang-stones, and 44 TR at the level of the Flagstones.

하악 2급 치근 이개부 병소에서 키토산 나노 차폐막을 이용한 치주조직 재생의 임상적 효과에 관한 비교 연구 (A comparative study of the clinical effects of chitosan nanofiber membrane in the treatment of mandibular class II furcation defects)

  • 최한선;정임;김정빈;홍기석;임성빈;정진형
    • Journal of Periodontal and Implant Science
    • /
    • 제35권3호
    • /
    • pp.703-718
    • /
    • 2005
  • The purpose of this study was to evaluate the clinical efficacy of guided tissue regeneration(GTR) technique using chitosan nanofiber membrane and to compare it to the clinical efficacy following GTR using PLA/PLGA(copolymer of polvlactic acid and polylacticglycolic acid) membrane in mandibular class II furcation defects in human. The chitosan nanofiber membranes were applied to the mandibular class II furcation defects of 13 patients(test group) and PLA/PLGA membranes were applied to those of 11 patients(control group). Probing pocket depth, clinical attachment level, gingival recession, plaque index and gingival index were measured at baseline and 3 months postoperatively. Vertical and horizontal furcation defect depth were measured at surgery. Both groups were statistically analyzed by Wilcoxon signed Ranks Test and Mann-Whitney Test using SPSS program. The results were as follows: 1. Probing pocket depth, clinical attachment loss and gingival index were significantly reduced at 3 months postoperatively compared to values of baseline in both groups(p<0.05). 2. Gingival recession and plaque index were not significantly decreased at 3 months postoperatively compared to values of baseline in both groups. 3. No significant difference between two groups could be detected with regard to changes of probing pocket depth, gingival recession, clinical attachment level, plaque index and gingival index at 3 months postoperatively. In conclusion, chitosan nanofiber membrane is effective in the treatment of human mandibular class II furcation defects and a longer period study is needed to fully evaluate the outcomes.

Practical applicable model for estimating the carbonation depth in fly-ash based concrete structures by utilizing adaptive neuro-fuzzy inference system

  • Aman Kumar;Harish Chandra Arora;Nishant Raj Kapoor;Denise-Penelope N. Kontoni;Krishna Kumar;Hashem Jahangir;Bharat Bhushan
    • Computers and Concrete
    • /
    • 제32권2호
    • /
    • pp.119-138
    • /
    • 2023
  • Concrete carbonation is a prevalent phenomenon that leads to steel reinforcement corrosion in reinforced concrete (RC) structures, thereby decreasing their service life as well as durability. The process of carbonation results in a lower pH level of concrete, resulting in an acidic environment with a pH value below 12. This acidic environment initiates and accelerates the corrosion of steel reinforcement in concrete, rendering it more susceptible to damage and ultimately weakening the overall structural integrity of the RC system. Lower pH values might cause damage to the protective coating of steel, also known as the passive film, thus speeding up the process of corrosion. It is essential to estimate the carbonation factor to reduce the deterioration in concrete structures. A lot of work has gone into developing a carbonation model that is precise and efficient that takes both internal and external factors into account. This study presents an ML-based adaptive-neuro fuzzy inference system (ANFIS) approach to predict the carbonation depth of fly ash (FA)-based concrete structures. Cement content, FA, water-cement ratio, relative humidity, duration, and CO2 level have been used as input parameters to develop the ANFIS model. Six performance indices have been used for finding the accuracy of the developed model and two analytical models. The outcome of the ANFIS model has also been compared with the other models used in this study. The prediction results show that the ANFIS model outperforms analytical models with R-value, MAE, RMSE, and Nash-Sutcliffe efficiency index values of 0.9951, 0.7255 mm, 1.2346 mm, and 0.9957, respectively. Surface plots and sensitivity analysis have also been performed to identify the repercussion of individual features on the carbonation depth of FA-based concrete structures. The developed ANFIS-based model is simple, easy to use, and cost-effective with good accuracy as compared to existing models.

Nonlinearity effect on the dynamic behavior of the clayey basin edge

  • Hadi Khanbabazadeh
    • Geomechanics and Engineering
    • /
    • 제36권4호
    • /
    • pp.367-380
    • /
    • 2024
  • Investigations has shown that the correct estimation of the effective amplification period is as important as the amplification value itself. It gets more important in 2D basins. This study presents a quantitative coefficient for consideration of the nonlinearity effect in terms of amplification value and the shift in its period which is missing or ineffectively considered in the previous studies. To attain this goal, by the application of a time domain fully nonlinear method, the deviation of the more common equivalent linear results from the basin nonlinear behavior under strong ground motions is investigated quantitatively. Also, despite the increase in the damping ratio, the possibility of the increase in the amplification due to the increase in motion strength is shown. To make the results useful in engineering practice, by introducing nonlinearity ratio, the effect of the nonlinearity is quantitatively estimated for two soft and stiff clayey basins with three different depths under a set of motions scaled to two target spectrum. Results show that at the 100 m depth soft clayey basin, while the nonlinearity ratio shows a 35% deviation at the basin edge part under DD1 motion level, its effect moves to the central part with 20% effect under DD3 motion level. By the increase in depth to 150 m, the results show a decrease in the overall effect of the nonlinear behavior for both clay types. At this depth, the nonlinearity ratio gives a 30% and 17% difference on a limited distance from outcrop at the soft clayey basin under DD1 and DD3 motion levels, respectively. At the 30 m depth basins, the nonlinearity ratio shows up to 25% difference for different cases. The presented ratio would be introduced as nonlinearity coefficients for consideration of the nonlinearity effects in the codes. The presented quantitative margins will help the designer to have a better understanding of the amplification period change because of nonlinearity over 2D basin surface.