본 논문에서는 CCD 카메라를 이용하여 획득된 영상들 간의 상대적인 열화(Blur)를 이용하여 물체의 3차원 형상 및 거리 정보를 얻을 수 있는 Depth From Defocus(DFD) 방법을 제안한다. 기존 논문의 주파수 영역에서 디포커스(Defocus) 연산자를 구하는 역필터링(Inverse filtering) 방법은 정확도가 떨어지고, 윈도우 효과(Windowing effects) 및 영상의 경계 효과(Border effect)와 같은 단점이 있었다. 또한 일반적인 영상은 비정체성 (Nonstationary)이기 때문에, 임의의 텍스처에 대한 가우시안(Gaussian) 및 라플라시안(Laplacian) 연산자 등의 필터를 이용하는 디포커스 방법의 추정값은 결과가 좋지 않다. 이러한 문제점들을 해결하기 위해 지역적 분석과 함께 다양한 크기의 윈도우를 제공하는 웨이블릿 변환을 이용한 DFD 방법을 제안한다. 복잡한 텍스처 특성을 갖는 영상의 깊이 추정을 위해서는 웨이블릿 분석을 사용하는 것이 효과적이다. Parseval의 정리에 의해 영상 간의 웨이블릿 에너지의 비율이 열화 계수(Blur parameter) 및 거리와 관련 있음을 증명하였다. 제안된 DFD 알고리즘의 성능을 계산하기 위해 실험은 종합적이며 실제적인 영상을 이용하여 행하였다. 본 논문의 DFD 방식은 기존의 DFD 방법보다 RMS 에러 측면에서 정확한 결과를 보였다.
Bokeh effect is a stylistic technique that can produce blurring the background of photos. This paper implements to produce a bokeh effect with a single image by post processing. Generating depth map is a key process of bokeh effect, and depth map is an image that contains information relating to the distance of the surfaces of scene objects from a viewpoint. First, this work presents algorithms to determine the depth map from a single input image. Then, we obtain a sparse defocus map with gradient ratio from input image and blurred image. Defocus map is obtained by propagating threshold values from edges using matting Laplacian. Finally, we obtain the blurred image on foreground and background segmentation with bokeh effect achieved. With the experimental results, an efficient image processing method with bokeh effect applied using a single image is presented.
This paper addresses a problem of defocus map recovery from single image. We describe a simple effective approach to estimate the spatial value of defocus blur at the edge location of the image. At first, we perform a re-blurring process using Gaussian function with input image, and calculate a gradient magnitude ratio with blurring amount between input image and re-blurred image. Then we get a full defocus map by propagating the blur amount at the edge location. Experimental result reveals that our method outperforms a reliable estimation of depth map, and shows that our algorithm is robust to noise, inaccurate edge location and interferences of neighboring edges within input image.
Kim, Jong-Il;Ahn, Hyun-Sik;Jeong, Gu-Min;Kim, Do-Hyun
제어로봇시스템학회:학술대회논문집
/
제어로봇시스템학회 2005년도 ICCAS
/
pp.383-388
/
2005
Depth recovery in robot vision is an essential problem to infer the three dimensional geometry of scenes from a sequence of the two dimensional images. In the past, many studies have been proposed for the depth estimation such as stereopsis, motion parallax and blurring phenomena. Among cues for depth estimation, depth from lens translation is based on shape from motion by using feature points. This approach is derived from the correspondence of feature points detected in images and performs the depth estimation that uses information on the motion of feature points. The approaches using motion vectors suffer from the occlusion or missing part problem, and the image blur is ignored in the feature point detection. This paper presents a novel approach to the defocus technique based depth from lens translation using sequential SVD factorization. Solving such the problems requires modeling of mutual relationship between the light and optics until reaching the image plane. For this mutuality, we first discuss the optical properties of a camera system, because the image blur varies according to camera parameter settings. The camera system accounts for the camera model integrating a thin lens based camera model to explain the light and optical properties and a perspective projection camera model to explain the depth from lens translation. Then, depth from lens translation is proposed to use the feature points detected in edges of the image blur. The feature points contain the depth information derived from an amount of blur of width. The shape and motion can be estimated from the motion of feature points. This method uses the sequential SVD factorization to represent the orthogonal matrices that are singular value decomposition. Some experiments have been performed with a sequence of real and synthetic images comparing the presented method with the depth from lens translation. Experimental results have demonstrated the validity and shown the applicability of the proposed method to the depth estimation.
3D 카메라 기술 중에서 초점의 흐려짐을 이용한 깊이 추정은 카메라의 초점거리 평면의 물체는 선명한 상이 맺히지만 카메라의 초점거리 평면으로부터 멀어진 물체는 흐린 영상을 만들어낸다는 현상을 이용해 3D 깊이를 추정한다. 본 논문에서는 단일 카메라를 이용하여 촬영한 영상의 흐림 정도를 분석하여 3D 깊이를 추정하는 알고리즘을 연구하였다. 단일 카메라의 1 개의 영상 또는 단일 카메라의 초점이 서로 다른 2 개의 영상을 사용하여 초점의 흐려짐을 이용한 3D 깊이를 추정하는 방법을 통해 최적화된 피사체 범위를 도출하였다. 1 개의 영상을 이용한 깊이 추정에서는 스마트폰 카메라와 DSLR 카메라 모두 250 mm의 초점거리를 사용하는 것이 가장 좋은 성능을 보였다. 2개의 영상을 이용한 깊이 추정에서는 스마트폰 카메라 영상은 150 mm와 250 mm로 그리고 DSLR 카메라 영상은 200 mm와 300 mm로 초점거리를 설정하였을 때 가장 좋은 3D 깊이 추정 유효 범위를 갖는 것으로 나타났다.
Depth calculation of objects in a scene from images is one of the most studied processes in the fields of image processing, computer vision, and photogrammetry. Conventionally, depth is calculated using a pair of overlapped images captured at different view points. However, there have been studies to calculate depths from a single image. Theoretically, it is known to be possible to calculate depth using the diameter of CoC (Circle of Confusion) caused by defocus under the assumption of a thin lens model. Thus, this study aims to verify the validity of the thin lens model to calculate depth from edge blur amount which corresponds to the radius of CoC. For this study, a commercially available DSLR (Digital Single Lens Reflex) camera was used to capture a set of target sheets which had different edge contrasts. In order to find out the pattern of the variations of edge blur against varying combination of FD (Focusing Distance) and OD (Object Distance), the camera was set to varying FD and target sheet images were captured at varying OD under each FD. Then, the edge blur and edge displacement were estimated from edge slope profiles using a brute-force method. The experimental results show that the pattern of the variations of edge blur observed in the target images was apart from their corresponding theoretical amounts derived under the thin lens assumption but can still be utilized to calculate depth from a single image for the cases similar to the limited conditions experimented under which the tendency between FD and OD is manifest.
The blur amount of an image changes proportional to scene depth. Depth from Defocus (DFD) is an approach in which a depth map can be obtained using blur amount calculation. In this paper, a novel DFD method is proposed in which depth is measured using an infocused and a defocused image. Subbaro's algorithm is used as a preliminary depth estimation method and edge blur estimation is provided to overcome drawbacks in edge.
본 논문에서는 단일 프레임 영상에서 초점을 이용하여 초기 깊이정보를 추출한 후 입체 영상을 생성하는 방법을 제안하였다. 단일 프레임 영상에서 깊이를 추정하기 위해 원본 영상과 가우시안 필터를 중첩 적용하여 생성된 영상의 비교를 통해 영상의 초점 값을 추출하고 추출된 값을 기반으로 초기 깊이정보를 생성하도록 하였다. 생성된 초기 깊이정보를 Normalized cut을 이용한 객체 분할 결과에 할당하고 각 객체의 깊이를 객체 내 깊이 정보의 평균값으로 보정하여 동일 객체가 같은 깊이 값을 갖도록 하였다. 객체를 제외한 배경 영역은 객체를 제외한 배경 영역의 에지 정보를 이용하여 깊이를 생성하였다. 생성된 깊이를 DIBR(Depth Image Based Rendering)을 이용하여 입체 영상으로 변환하였고 기존 알고리즘을 통해 생성된 영상과 비교 분석하였다.
카메라 초점에 의해 발생하는 흐림(blur)의 변화는 깊이값을 측정하는데 사용한다. DFD(Depth from Defocus)는 깊이값과 흐림의 비례 관계를 이용하여 흐림의 양을 측정하는 기술이다. 기존 DFD 방법은 입력으로 두 장의 비초점 영상(defocused image)을 사용하는데, 기술적인 문제로 낮은 품질의 복원된 초점 영상(infocused image)과 깊이맵을 얻고 있다. 상기 문제점을 해결하는 방법으로 초점영상과 비초점 영상을 이용함으로써 복원된 초점 영상의 품질 저하를 해결한다. 제안 방법에서는 Subbaro가 제안한 DFD 방법에 새로운 에지 흐림 측정 방법을 결합하여 보다 정확한 흐림 값을 구한다. 또한 명암의 변화가 적은 영역에서는 흐림의 양을 측정하기가 어렵기 때문에, 관심맵(saliency)을 이용하여 비에지 영역을 채울 수 있도록 하였다. 실험에서는 초점 조절 기능이 있는 카메라로부터 20장의 2K FHD 해상도의 초점 및 비초점 영상을 생성한 후에 제안 방법을 이용하여 깊이맵을 생성하고, 마지막으로 입력 초점 영상과 깊이맵으로부터 3D 입체영상을 제작하였다. 3D 모니터로 시청한 결과 안정된 3D 공간감과 입체감을 얻을 수 있었다.
본 논문에서는 2D/3D 동영상 변환을 위해 깊이가 할당될 전경을 초점 정보와 색상분석 기반의 그룹화를 이용하여 추출하고, 전경의 깊이를 초점 정보와 움직임 정보를 이용하여 생성하는 방법을 제안하였다. 2D영상에서 전경을 추출하기 위해 영상의 초점 정보의 움직임을 추정하여 전경 후보 영상을 생성하고, 전경 후보 영상에 존재하는 객체 내부의 홀 영역을 색상 분석을 이용한 채움 과정을 수행하여 전경 영역을 추출하였다. 생성된 전경 영역에 깊이를 할당하기 위해 해당 프레임에 존재하는 초점 값을 분석하여 초기 깊이 정보를 생성하고 움직임 정보를 가중하여 깊이 정보를 할당하였다. 생성된 깊이 정보의 품질을 평가하기 위해 기존에 제안된 알고리즘의 결과 영상과 비교하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.