• Title/Summary/Keyword: deposition condition

Search Result 989, Processing Time 0.041 seconds

Morphologic Response of Gravel Beach to Typhoon Invasion - A Case Study of Gamji Beach Taejongdae in Busan (태풍 내습 시 자갈 해빈의 지형반응 - 부산 태종대 감지 해빈의 사례)

  • Lee, Young Yun;Chang, Tae Soo
    • Journal of the Korean earth science society
    • /
    • v.41 no.1
    • /
    • pp.19-30
    • /
    • 2020
  • To understand the impact of typhoons on Gamji gravel beach Taejongdae in Busan, we carried out beach profiling using a VRS-GPS system and a Drone photogrammetry for the typhoons 'Kong-rey' invaded in October 2018 and 'Danas' in July 2019. In addition, grain sizes are analyzed to investigate the overall distribution pattern of gravels on the beach, and the beach topography is surveyed periodically to confirm the recovery rate of the beach. Grain-size analysis reveals that mean gravel sizes, in general, become finer from -6.2Φ to -5.4Φ towards the east in the seashore line direction. Variation in mean sizes is obviously observed in the cross-shore direction. Gravels in the swash zone are relatively fine about -4.5Φ in size and equant in shape, whereas the coarse and oblate gravels ranged from -5Φ to -6Φ are found in the berm. Gamji gravel beach particularly has two lines of berms: a lower berm situated facing beach and an upper berm about 10 m landward. After the typhoon Kong-rey passed by, about 1.4 m of severe erosion in upper berm occurred, and the berm eventually disappeared. On the backshore of the upper berm about 50 cm of erosion took place so that the elevation became lower. However, tangible erosion was not observed in the lower berm. When typhoon Danas hit, rated as mild storm, both upper and lower berm were eroded out. However, about 50 cm of deposition occurred only in the backshore. Only three days later, the new lower berm was formed, meaning that sedimentation rate must be high. This result indicates that Gamji gravel beach is recovered very fast from erosion caused by the typhoons when it is under the fair-weather condition even though beach morphology changes dramatically in a short period of time. Gravel beach is estimated to be or evaluated very resilient to typhoon erosion.

A Study on the Effect of O$_2$ annealing on Structural, Optical, and Electrical Characteristics of Undoped ZnO Thin Films Deposited by Magnetron Sputtering (산소 어닐링이 마그네 트론 스퍼터링으로 증착된 undoped ZnO박막의 구조적, 광학적, 전기적 특성에 미치는 영향에 대한 연구)

  • Yun, Eui-Jung;Park, Hyeong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.7-14
    • /
    • 2009
  • In this paper, the effects of annealing conditions on the structural ((002) intensity, FWHM, d-spacing, grain size, (002) peak position), optical (UV peak, UV peak position) and electrical properties (carrier concentrations, resistivity, mobility) of ZnO films were investigated. ZnO films were deposited onto SiO$_2$/si substrates by RF magnetron sputtering from a ZnO target. The substrate was not heated during deposition. ZnO films were annealed in temperature ranges of $500\sim650^{\circ}C$ in the O$_2$ flow for 5$\sim$20 min. The film average thicknesses were in the range of 291 nm. The surface morphologies and structures of the samples were characterize by SEM and XRD, respectively. The optical properties were evaluated by photoluminescence (PL) measurement at room temperature (RT) using a He-Cd 325 nm laser. As the annealing temperature and time vary, the following relations were also observed: (1) proportional relationships among UV intensity (002) intensity, and grain size exist, (2) UV intensity is inversely proportional to FWHM, (3) there is no special relationship between UV intensity and electron carrier concentrations, (4) d-spacing is inversely proportional to (002) peak position, (5) UV peak position in the range of 3.20$\sim$3.24 eV means that ZnO films have a n-type conductivity which was consistent with that obtained from the electrical property, (6) the optimal conditions for the best optical and structural characteristics were found to be oxygen fraction, (O$_2$/(O$_2$+Ar)) of 0.2, RF power of 240W, substrate temperature of RT, annealing condition of 600$^{\circ}C$ for 20 min, and sputtering pressure of 20 mTorr.

Analysis of Evaluation Methods for the Efficacy of Protein Removal Agents for Soft Contact Lens (소프트콘택트렌즈 단백질제거제의 효능 평가법 분석)

  • Byuna, Hyun Young;Sung, Hyung Gyeong;Won, Hye Lim;Shim, Ji In;Park, Mijung;Kim, So Ra
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.1
    • /
    • pp.51-57
    • /
    • 2014
  • Purpose: The present study was conducted to establish the experimental condition for the proper evaluation of protein removal efficacy when developing protein removal agents. Its protein removal efficacy was further analyzed and compared with the result from protein removal efficacy against protein deposition on contact lens to suggest the evaluation method for efficacy of protein removal agents. Methods: Protein digestibility assay presented in the Korean pharmacopoeia was selected to establish the evaluation method for efficacy of papain, pancreatin, subtilisin A and protease itself as a ingredient and protein removal tablets or solution containing those enzymes and find a suitable test conditions. Furthermore, the cleaning efficacy of commercially available protein removal tablets and solution on balafilcon A lens deposited with protein artificially was measured and the correlation between two evaluation methods was further analyzed. Results: When pancreatin itself and the product containing pancreatin was evaluated by protein digestibility assay, both reached 28 IU/mg, the standard value of protein digestibility suggested by the Korean pharmacopoeia. In case of protease and subtilisin A tested with trichloroacetic acid B solution, both of them met the enzyme activity level proposed by the manufacturers when they were evaluated by protein digestibility assay however, papain and subtilisin A tested with trichloroacetic acid A solution were not reached the enzyme activity level. Among protein removal agents, three products except a product containing pancreatin did not meet the enzyme activity value specified by the manufacturer when they were evaluated by protein digestibility assay. However, actual protein removal efficacy of three products except a papain-containing product on the lens was greater than 90% protein removal. In the case of papain-containing protein removal product, its effect was not measured by protein digestibility assay however, its actual protein removal efficacy on the lens reached 73.72%. Conclusions: From the results, it was confirmed that the efficacy of protein removal agents for contact lens should be evaluated by different method according to the type of proteolytic enzyme contained. That is, the protein removal agents containing pancreatin, protease and subtilisin A can be evaluated by protein digestibility assay and protein removal efficiency evaluation and the products containing papain can be effectively evaluated by only the evaluation method for protein removal efficiency employing the lens.

Sedimentary Characters of the Core Sediments and Their Stratigraphy Using $^{87}Sr/^{86}Sr$ Ratio in the Korea Plateau, East Sea (동해 한국대지 코어퇴적물의 특성과 $^{87}Sr/^{86}Sr$ 초기비를 이용한 퇴적시기 규명)

  • Kim, Jin-Kyoung;Woo, Kyung-Sik;Yoon, Seok-Hoon;Suk, Bong-Chool
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.4
    • /
    • pp.328-336
    • /
    • 2007
  • A piston core (587 cm long) was recovered from the upper slope of a seamount in the Korea Plateau. Three episodes of sedimentation were identified based on sedimentary facies, grain size distribution, carbonate constituents and initial $^{87}Sr/^{86}Sr$ ratio of carbonates. The lower part of the core, Unit I-a (core depth $465{\sim}587cm$) is composed of shallow marine carbonate sediments the deposited by storm surges, and is about $13{\sim}15Ma$ (Middle Miocene) based on $^{87}Sr/^{86}Sr$ initial ratio. This suggests that the depositional environment was relatively shallow enough to be influenced by storm activities. Unit I-b (core depth $431{\sim}465cm$) is mostly composed of turbidites, and Sr isotope ages of bivalves and planktonic formaminifera are about $11{\sim}14\;and\;6{\sim}13Ma$, respectively. This indicates that the Korea Plateau maintained shallow water condition until 11 Ma, and began to subside since then. However, planktonic foraminifera were deposited after 11 Ma and redeposited as turbidites as a mixture of planktonic foraminifera and older shallow marine carbonates about 6 Ma ago. Unit II (core depth $0{\sim}431cm$) is composed of pelagic sediments, and the Sr isotope age is younger than 1 Ma, thus the time gap is about 5 Ma at the unconformity. About 1 Ma ago, the Korea Plateau subsided down to a water depth of about 600 m. The sampling locality was intermittently influenced by debris flows and/or turbidity currents along the slope, resulting the deposition of re-transported coarse shallow marine and volcaniclastic sediments.

The Study on New Radiating Structure with Multi-Layered Two-Dimensional Metallic Disk Array for Shaping flat-Topped Element Pattern (구형 빔 패턴 형성을 위한 다층 이차원 원형 도체 배열을 갖는 새로운 방사 구조에 대한 연구)

  • 엄순영;스코벨레프;전순익;최재익;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.667-678
    • /
    • 2002
  • In this paper, a new radiating structure with a multi-layered two-dimensional metallic disk array was proposed for shaping the flat-topped element pattern. It is an infinite periodic planar array structure with metallic disks finitely stacked above the radiating circular waveguide apertures. The theoretical analysis was in detail performed using rigid full-wave analysis, and was based on modal representations for the fields in the partial regions of the array structure and for the currents on the metallic disks. The final system of linear algebraic equations was derived using the orthogonal property of vector wave functions, mode-matching method, boundary conditions and Galerkin's method, and also their unknown modal coefficients needed for calculation of the array characteristics were determined by Gauss elimination method. The application of the algorithm was demonstrated in an array design for shaping the flat-topped element patterns of $\pm$20$^{\circ}$ beam width in Ka-band. The optimal design parameters normalized by a wavelength for general applications are presented, which are obtained through optimization process on the basis of simulation and design experience. A Ka-band experimental breadboard with symmetric nineteen elements was fabricated to compare simulation results with experimental results. The metallic disks array structure stacked above the radiating circular waveguide apertures was realized using ion-beam deposition method on thin polymer films. It was shown that the calculated and measured element patterns of the breadboard were in very close agreement within the beam scanning range. The result analysis for side lobe and grating lobe was done, and also a blindness phenomenon was discussed, which may cause by multi-layered metallic disk structure at the broadside. Input VSWR of the breadboard was less than 1.14, and its gains measured at 29.0 GHz. 29.5 GHz and 30 GHz were 10.2 dB, 10.0 dB and 10.7 dB, respectively. The experimental and simulation results showed that the proposed multi-layered metallic disk array structure could shape the efficient flat-topped element pattern.

Spectral Response of $TiO_{2}$/Se : Te Heterojunction for Color Sensor (컬러센서를 위한 $TiO_{2}$/Se : Te 이종접합의 스펙트럼 응답)

  • Woo, Jung-Ok;Park, Wug-Dong;Kim, Ki-Wan;Lee, Wu-Il
    • Journal of Sensor Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.101-108
    • /
    • 1993
  • $TiO_{2}$/Se : Te heterojunction for color sensor has been fabricated by RF reactive sputtering and thermal evaporation methods onto glass substrate. The optimum deposition condition of $TiO_{2}$ films was such that RF power was 120 W, substrate temperature was $100^{\circ}C$, oxygen concentration was 50%, working pressure was 50 mTorr for the $TiO_{2}$ film thickness of $1000{\AA}$. In this case, the optical transmittance of $TiO_{2}$ film at 550 nm-wavelength was 85%, resistivity was $2{\times}10^9{\Omega}{\cdot}cm$, refractive index was 2.3, and optical bandgap was 3.58 eV. The composition ratio of 0 to Ti by AES analysis was 1.7. When $TiO_{2}$ films were annealed at $400^{\circ}C$ for 30 min. in $O_{2}$ ambient, the optical transmittance of $TiO_{2}$ films at the wavelength range of $300{\sim}580$ nm was improved from 0 to 25%. When Se : Te films were annealed at $190^{\circ}C$ for 1 min., photosensitivity under illumination of 1000 lux was 0.75. The optical bandgap of Se : Te films was 1.7 eV. The structures of Se : Te films were the hexagonal with (100) and (110) orientation. The spectral response of a-Se was improved by the addition of Te, especially in the long wavelength region. The $TiO_{2}$/Se : Te heterojunction showed wide spectral response, and more improved one than that of a-Si film in the blue light region.

  • PDF

Comparison of Characteristics of Electrodeposited Lithium Electrodes Under Various Electroplating Conditions (다양한 전착조건에서 제작된 리튬 전극의 특성 연구)

  • Lim, Rana;Lee, Minhee;Kim, Jeom-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.128-137
    • /
    • 2019
  • A lithium is the lightest metal on the earth. It has some attractive characteristics as a negative electrode material such as a low reduction potential (-3.04 V vs. SHE) and a high theoretical capacity ($3,860mAh\;g^{-1}$). Therefore, it has been studied as a next generation anode material for high energy lithium batteries. The thin lithium electrode is required to maximize the efficiency and energy density of the battery, but the physical roll-press method has a limitation in manufacturing thin lithium. In this study, thin lithium electrode was fabricated by electrodeposition under various conditions such as compositions of electrolytes and the current density. Deposited lithium showed strong relationship between process condition and its characteristics. The concentration of electrolyte affects to the shape of deposited lithium particle. As the concentration increases, the shape of particle changes from a sharp edged long one to a rounded lump. The former shape is favorable for suppressing dendrite formation and the elec-trode shows good stripping efficiency of 92.68% (3M LiFSI in DME, $0.4mA\;cm^{-2}$). The shape of deposited particle also affected by the applied current density. When the amount of current applied gets larger the shape changes to the sharp edged long one like the case of the low concentration electrolyte. The combination of salts and solvents, 1.5M LiFSI + 1.5M LiTFSI in DME : DOL [1 : 1 vol%] (Du-Co), was applied to the electrolyte for the lithium deposition. The lithium electrode obtained from this electrolyte composition shows the best stripping efficiency (97.26%) and the stable reversibility. This is presumed to be due to the stability of the surface film induced by the Li-F component and the DOL effect of providing film flexibility.

Performance evaluation of hyperspectral bathymetry method for morphological mapping in a large river confluence (초분광수심법 기반 대하천 합류부 하상측정 성능 평가)

  • Kim, Dongsu;Seo, Youngcheol;You, Hojun;Gwon, Yeonghwa
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.3
    • /
    • pp.195-210
    • /
    • 2023
  • Additional deposition and erosion in large rivers in South Korea have continued to occur toward morphological stabilization after massive dredging through the four major river restoration project, subsequently requiring precise bathymetry monitoring. Hyperspectral bathymetry method has increasingly been highlighted as an alternative way to estimate bathymetry with high spatial resolution in shallow depth for replacing classical intrusive direct measurement techniques. This study introduced the conventional Optimal Band Ratio Analysis (OBRA) of hyperspectral bathymetry method, and evaluated the performance in a domestic large river in normal turbid and flow condition. Maximum measurable depth was estimated by applying correlation coefficient and root mean square error (RMSE) produced during OBRA with cascadedly applying cut-off depth, where the consequent hyperspectral bathymetry map excluded the region over the derived maximum measurable depth. Also non-linearity was considered in building relation between optimal band and depth. We applied the method to the Nakdong and Hwang River confluence as a large river case and obtained the following features. First, the hyperspectal method showed acceptable performance in morphological mapping for shallow regions, where the maximum measurable depth was 2.5 m and 1.25 m in the Nakdong and Hwang river, respectively. Second, RMSE was more feasible to derive the maximum measurable depth rather than the conventional correlation coefficient whereby considering various scenario of excluding range of in situ depths for OBRA. Third, highly turbid region in Hwang River did not allow hyperspectral bathymetry mapping compared with the case of adjacent Nakdong River, where maximum measurable depth was down to half in Hwang River.

Regional Development And Dam Construction in Korea (한국의 지역개발과 댐건설)

  • 안경모
    • Water for future
    • /
    • v.9 no.1
    • /
    • pp.38-42
    • /
    • 1976
  • Because of differences in thoughts and ideology, our country, Korea has been deprived of national unity for some thirty years of time and tide. To achieve peaceful unification, the cultivation of national strength is of paramount importance. This national strength is also essential if Korea is to take rightful place in the international societies and to have the confidence of these societies. However, national strength can never be achieved in a short time. The fundamental elements in economic development that are directly conducive to the cultivation of national strength can be said to lie in -a stable political system, -exertion of powerful leadership, -cultivation of a spirit of diligence, self-help and cooperation, -modernization of human brain power, and -establishment of a scientific and well planned economic policy and strong enforcement of this policy. Our country, Korea, has attained brilliant economic development in the past 15 years under the strong leadership of president Park Chung Hee. However, there are still many problems to be solved. A few of them are: -housing and home problems, -increasing demand for employment, -increasing demand for staple food and -the need to improve international balance of payment. Solution of the above mentioned problems requires step by step scientific development of each sector and region of our contry. As a spearhead project in regional development, the Saemaul Campaign or new village movement can be cited. The campaign is now spreading throughout the country like a grass fire. However, such campaigns need considerable encouragement and support and the means for the desired development must be provided if the regional and sectoral development program is to sucdceed. The construction of large multipurpose dams in major river basin plays significant role in all aspects of national, regional and sectoral development. It ensures that the water resource, for which there is no substitute, is retained and utilized for irrigation of agricultural areas, production of power for industry, provision of water for domestic and industrial uses and control of river water. Water is the very essence of life and we must conserve and utilize what we have for the betterment of our peoples and their heir. The regional and social impact of construction of a large dam is enormous. It is intended to, and does, dras tically improve the "without-project" socio-economic conditions. A good example of this is the Soyanggang multipurpose dam. This project will significantly contribute to our national strength by utilizing the stored water for the benefit of human life and relief of flood and drought damages. Annual average precipitation in Korea is 1160mm, a comparatively abundant amount. The catchment areas of the Han River, Keum River, and Youngsan River are $62,755\textrm{km}^2$, accounting for 64% of the national total. Approximately 62% of the national population inhabits in this area, and 67% of the national gross product comes from the area. The annual population growth rate of the country is currently estimated at 1.7%, and every year the population growth in urban area increases at a rising rate. The population of Seoul, Pusan, and Taegu, the three major cities in Korea, is equal to one third of our national total. According to the census conducted on October 1, 1975, the population in the urban areas has increased by 384,000, whereas that in rural areas has decreased by 59,000,000 in the past five years. The composition of population between urban and rural areas varied from 41%~59% in 1959 to 48%~52% in 1975. To mitigate this treand towards concentration of population in urban areas, employment opportunities must be provided in regional and rural areas. However, heavy and chemical industries, which mitigate production and employment problems at the same time, must have abundant water and energy. Also increase in staple food production cannot be attained without water. At this point in time, when water demand is rapidly growing, it is essential for the country to provide as much a reservoir capacity as possible to capture the monsoon rainfall, which concentarated in the rainy seaon from June to Septesmber, and conserve the water for year round use. The floods, which at one time we called "the devil" have now become a source of immense benefit to Korea. Let me explain the topographic condition in Korea. In northern and eastern areas we have high mountains and rugged country. Our rivers originate in these mountains and flow in a general southerly or westerly direction throught ancient plains. These plains were formed by progressive deposition of sediments from the mountains and provide our country with large areas of fertile land, emminently suited to settlement and irrigated agricultural development. It is, therefore, quite natural that these areas should become the polar point for our regional development program. Hower, we are fortunate in that we have an additional area or areas, which can be used for agricultural production and settlement of our peoples, particularly those peoples who may be displaced by the formation of our reservoirs. I am speaking of the tidelands along the western and southern coasts. The other day the Ministry of Agriculture and Fishery informed the public of a tideland reclamation of which 400,000 hectares will be used for growing rice as part of our national food self-sufficiency programme. Now, again, we arrive at the need for water, as without it we cannot realize this ambitious programme. And again we need those dams to provide it. As I mentioned before, dams not only provide us with essential water for agriculture, domestic and industrial use, but provide us with electrical energy, as it is generally extremely economical to use the water being release for the former purposes to drive turbines and generators. At the present time we have 13 hydro-electric power plants with an installed capacity of 711,000 kilowatts equal to 16% of our national total. There are about 110 potential dams ites in the country, which could yield about 2,300,000 kilowatts of hydro-electric power. There are about 54 sites suitable for pumped storage which could produce a further 38,600,000 kilowatts of power. All available if we carefully develop our water resources. To summarize, water resource development is essential to the regional development program and the welfare of our people, it must proceed hand-in-hand with other aspects of regional development such as land impovement, high way extension, development of our forests, erosion control, and develop ment of heavy and chemical industries. Through the successful implementation of such an integrated regional development program, we can look forward to a period of national strength, and due recognition of our country by the worlds societies.

  • PDF