• 제목/요약/키워드: deployment

검색결과 2,081건 처리시간 0.03초

Trajectory analysis of a CubeSat mission for the inspection of an orbiting vehicle

  • Corpino, Sabrina;Stesina, Fabrizio;Calvi, Daniele;Guerra, Luca
    • Advances in aircraft and spacecraft science
    • /
    • 제7권3호
    • /
    • pp.271-290
    • /
    • 2020
  • The paper describes the analysis of deployment strategies and trajectories design suitable for executing the inspection of an operative spacecraft in orbit through re-usable CubeSats. Similar missions have been though indeed, and one mission recently flew from the International Space Station. However, it is important to underline that the inspection of an operative spacecraft in orbit features some peculiar characteristics which have not been demonstrated by any mission flown to date. The most critical aspects of the CubeSat inspection mission stem from safety issues and technology availability in the following areas: trajectory design and motion control of the inspector relative to the target, communications architecture, deployment and retrieval of the inspector, and observation needs. The objectives of the present study are 1) the identification of requirements applicable to the deployment of a nanosatellite from the mother-craft, which is also the subject of the inspection, and 2) the identification of solutions for the trajectories to be flown along the mission phases. The mission for the in-situ observation of Space Rider is proposed as reference case, but the conclusions are applicable to other targets such as the ISS, and they might also be useful for missions targeted at debris inspection.

SOFM을 이용한 센서 네트워크의 지능적인 배치 방식 (Intelligent Deployment Method of Sensor Networks using SOFM)

  • 정경권;엄기환
    • 한국정보통신학회논문지
    • /
    • 제11권2호
    • /
    • pp.430-435
    • /
    • 2007
  • 본 논문에서는 센서 네트워크의 원활한 전송을 위해 SOFM을 이용한 센서 네트워크의 지능적인 배치를 제안한다. 제안한 방법은 무선 채널 분석을 통해서 센서 노드 사이의 통신이 가능한 거리를 구하고, 신경회로망의 SOFM(Self-Organizing Feature Map)방식을 이용하여 지능적으로 최적의 센서 노드의 개수와 센서 노드가 배치할 최적 위치를 결정한다. Log-normal path loss 모델을 이용하여 거리에 따른 PRR(Packet Reception Rate)을 구하고, 이것으로부터 센서 노드의 통신 범위를 결정한다. 제안한 방식의 유용성을 확인하기 위하여 센서 노드의 지능적인 위치 탐색과 센서 네트워크의 연결 상태에 대한 시뮬레이션을 수행하였다.

복합재료 반사판 안테나의 전개 메커니즘 설계 및 시험 (Design and Test of a Deployment Mechanism for the Composite Reflector Antenna)

  • 채승호;오영은;이수용;노진호
    • 항공우주시스템공학회지
    • /
    • 제12권6호
    • /
    • pp.58-65
    • /
    • 2018
  • 여러 패널들로 파라볼라 반사판 형상을 가지는, 전개형 복합재료 안테나의 동적 특성을 수치적 그리고 실험적으로 살펴보고자 한다. 전개 장치들은 여러 패널들이 작은 공간에 효과적으로 수납될 수 있도록 설계하였다. 반사판 패널의 개수, 패널들의 폴딩(folding)/트위스팅(twisting) 각도, 그리고 전개 작동기 등의 특성을 고려하여 전개시 필요한 설계변수를 결정하였고, 반사판 패널은 CFRP(carbon fiber reinforced plastics)으로 제작하였다. 무중력 전개장치를 제작하여 반사판 안테나의 전개시험을 수행하였고, 동적 전개특성을 관찰하였다.

Flexible deployment of component-based distributed applications on the Cloud and beyond

  • Pham, Linh Manh;Nguyen, Truong-Thang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권3호
    • /
    • pp.1141-1163
    • /
    • 2019
  • In an effort to minimize operational expenses and supply users with more scalable services, distributed applications are actually going towards the Cloud. These applications, sent out over multiple environments and machines, are composed by inter-connecting independently developed services and components. The implementation of such programs on the Cloud is difficult and generally carried out either by hand or perhaps by composing personalized scripts. This is extremely error prone plus it has been found that misconfiguration may be the root of huge mistakes. We introduce AutoBot, a flexible platform for modeling, installing and (re)configuring complex distributed cloud-based applications which evolve dynamically in time. AutoBot includes three modules: A simple and new model describing the configuration properties and interdependencies of components; a dynamic protocol for the deployment and configuration ensuring appropriate resolution of these interdependencies; a runtime system that guarantee the proper configuration of the program on many virtual machines and, if necessary, the reconfiguration of the deployed system. This reduces the manual application deployment process that is monotonous and prone to errors. Some validation experiments were conducted on AutoBot in order to ensure that the proposed system works as expected. We also discuss the opportunity of reusing the platform in the transition of applications from Cloud to Fog computing.

Coil Embolization of Ruptured Proximal Posterior Inferior Cerebellar Artery Aneurysm with Contralateral Retrograde Approach for LVIS Jr. Intraluminal Support Deployment

  • Kim, Dong Sub;Sung, Jae Hoon;Lee, Dong Hoon;Yi, Ho Jun
    • Journal of Cerebrovascular and Endovascular Neurosurgery
    • /
    • 제20권4호
    • /
    • pp.235-240
    • /
    • 2018
  • The safety and feasibility of simple coil embolization and stent deployment for the treatment of posterior inferior cerebellar artery (PICA) aneurysms, as well as their radiologic and clinical results, have not been adequately understood. Especially, if dissecting aneurysm of proximal PICA is associated with small caliber PICA and stenosis of ipsilateral vertebral artery orifice (VAO), endovascular coiling with saving of PICA is not always easy. This 64-year-old man presented with subarachnoid hemorrhage due to a ruptured dissecting aneurysm of left proximal PICA. The aneurysm was irregularly fusiform in nature with a shallow PICA orifice (1.4 mm) and narrow caliber (0.9-1.5 mm). Moreover, the ipsilateral VAO showed severe stenosis (1.8 mm). We performed bifemoral puncture and chose additional route from right vertebral artery to left vertebrobasilar junction for retrograde approach and deployment of LVIS Jr. intraluminal support at proximal PICA. And then, the antegrade approach and coiling of aneurysm was done. Despite of transient thrombus of PICA, the aneurysm was successfully secured with preservation of whole PICA course. For preservation of narrow PICA with ipsilateral VAO stenosis, the contralateral approach and deployment of LVIS Jr. intraluminal support may be considered.

티어심 파손 강도를 고려한 동승석 에어백 도어시스템의 최적 설계 (Optimal Design of Passenger Airbag Door System Considering the Tearseam Failure Strength)

  • 최환영;공병석;박동규
    • 자동차안전학회지
    • /
    • 제13권3호
    • /
    • pp.60-68
    • /
    • 2021
  • Invisible passenger airbag door system of hard panel types must be designed with a weakened area such that the side airbag will deploy through the instrument panel as like intended manner, with no flying debris at any required operating temperature. At the same time, there must be no cracking or sharp edges in the head impact test. If the advanced airbag with the big difference between high and low deployment pressure ranges are applied to hard panel types of invisible passenger airbag (IPAB) door system, it becomes more difficult to optimize the tearseam strength for satisfying deployment and head impact performance simultaneously. It was introduced the 'Operating Window' idea from quality engineering to design the hard panel types of IPAB door system applied to the advanced airbag for optimal deployment and head impact performance. Zigzab airbag folding and 'n' type PAB mounting bracket were selected.

Self-Organization of Multi-UAVs for Improving QoE in Unequal User Distribution

  • Jeon, Young;Lee, Wonseok;Hoang, Tran Manh;kim, Taejoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권4호
    • /
    • pp.1351-1372
    • /
    • 2022
  • A self-organizing multiple unmanned aerial vehicles (multi-UAVs) deployment based on virtual forces has a difficulty in ensuring the quality-of-experience (QoE) of users because of the difference between the assumed center for users in a hotspot and an actual center for users in the hotspot. This discrepancy is aggravated in a non-uniform and mobile user distribution. To address this problem, we propose a new density based virtual force (D-VF) multi-UAVs deployment algorithm which employs a mean opinion score (MOS) as a metric of QoE. Because MOS is based on signal-to-noise ratio (SNR), a sum of users' MOS is a good metric not only to secure a wide service area but to enhance the link quality between multi-UAVs and users. The proposed algorithm improves users' QoE by combining virtual forces with a random search force for the exploration of finding multi-UAVs' positions which maximize the sum of users' MOS. In simulation results, the proposed deployment algorithm shows the convergence of the multi-UAVs into the position of maximizing MOS. Therefore, the proposed algorithm outperforms the conventional virtual force-based deployment scheme in terms of QoE for non-uniform user distribution scenarios.

Traffic Forecast Assisted Adaptive VNF Dynamic Scaling

  • Qiu, Hang;Tang, Hongbo;Zhao, Yu;You, Wei;Ji, Xinsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권11호
    • /
    • pp.3584-3602
    • /
    • 2022
  • NFV realizes flexible and rapid software deployment and management of network functions in the cloud network, and provides network services in the form of chained virtual network functions (VNFs). However, using VNFs to provide quality guaranteed services is still a challenge because of the inherent difficulty in intelligently scaling VNFs to handle traffic fluctuations. Most existing works scale VNFs with fixed-capacity instances, that is they take instances of the same size and determine a suitable deployment location without considering the cloud network resource distribution. This paper proposes a traffic forecasted assisted proactive VNF scaling approach, and it adopts the instance capacity adaptive to the node resource. We first model the VNF scaling as integer quadratic programming and then propose a proactive adaptive VNF scaling (PAVS) approach. The approach employs an efficient traffic forecasting method based on LSTM to predict the upcoming traffic demands. With the obtained traffic demands, we design a resource-aware new VNF instance deployment algorithm to scale out under-provisioning VNFs and a redundant VNF instance management mechanism to scale in over-provisioning VNFs. Trace-driven simulation demonstrates that our proposed approach can respond to traffic fluctuation in advance and reduce the total cost significantly.

Research on UAV access deployment algorithm based on improved virtual force model

  • Zhang, Shuchang;Wu, Duanpo;Jiang, Lurong;Jin, Xinyu;Cen, Shuwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권8호
    • /
    • pp.2606-2626
    • /
    • 2022
  • In this paper, a unmanned aerial vehicle (UAV) access deployment algorithm is proposed, which is based on an improved virtual force model to solve the poor coverage quality of UAVs caused by limited number of UAVs and random mobility of users in the deployment process of UAV base station. First, the UAV-adapted Harris Hawks optimization (U-AHHO) algorithm is proposed to maximize the coverage of users in a given hotspot. Then, a virtual force improvement model based on user perception (UP-VFIM) is constructed to sense the mobile trend of mobile users. Finally, a UAV motion algorithm based on multi-virtual force sharing (U-MVFS) is proposed to improve the ability of UAVs to perceive the moving trend of user equipments (UEs). The UAV independently controls its movement and provides follow-up services for mobile UEs in the hotspot by computing the virtual force it receives over a specific period. Simulation results show that compared with the greedy-grid algorithm with different spacing, the average service rate of UEs of the U-AHHO algorithm is increased by 2.6% to 35.3% on average. Compared with the baseline scheme, using UP-VFIM and U-MVFS algorithms at the same time increases the average of 34.5% to 67.9% and 9.82% to 43.62% under different UE numbers and moving speeds, respectively.

Acquisition, Processing and Image Generation System for Camera Data Onboard Spacecraft

  • C.V.R Subbaraya Sastry;G.S Narayan Rao;N Ramakrishna;V.K Hariharan
    • International Journal of Computer Science & Network Security
    • /
    • 제23권3호
    • /
    • pp.94-100
    • /
    • 2023
  • The primary goal of any communication spacecraft is to provide communication in variety of frequency bands based on mission requirements within the Indian mainland. Some of the spacecrafts operating in S-band utilizes a 6m or larger aperture Unfurlable Antenna (UFA for S-band links and provides coverage through five or more S-band spot beams over Indian mainland area. The Unfurlable antenna is larger than the satellite and so the antenna is stowed during launch. Upon reaching the orbit, the antenna is deployed using motors. The deployment status of any deployment mechanism will be monitored and verified by the telemetered values of micro-switch position before the start of deployment, during the deployment and after the completion of the total mechanism. In addition to these micro switches, a camera onboard will be used for capturing still images during primary and secondary deployments of UFA. The proposed checkout system is realized for validating the performance of the onboard camera as part of Integrated Spacecraft Testing (IST) conducted during payload checkout operations. It is designed for acquiring the payload data of onboard camera in real-time, followed by archiving, processing and generation of images in near real-time. This paper presents the architecture, design and implementation features of the acquisition, processing and Image generation system for Camera onboard spacecraft. Subsequently this system can be deployed in missions wherever similar requirement is envisaged.