• 제목/요약/키워드: depletion of nitrite

검색결과 12건 처리시간 0.027초

북동태평양 KOMO 정점에서 수온약층에 따른 무기영양염 분포 특성(1995-2002) (Inorganic Nutrient Distributions in Association with Thermocline at KOMO Station in the Northeast Equatorial Pacific Ocean during 1995-2002)

  • 손승규;손주원;김경홍;강정훈;지상범;유찬민;박정기;김웅서
    • Ocean and Polar Research
    • /
    • 제26권2호
    • /
    • pp.377-384
    • /
    • 2004
  • Annual variations of inorganic nutrients such as nitrate(+nitrite), phosphate and silicate in association with thermocline were investigated in the upper 200 m of the water column at KODES Long-term Monitoring (KOMO) station in the northeast equatorial Pacific from 1995 to 2002. Global climatic disturbances such as El Nino and La Nina, should have affected KODES area during the study period. In 1995-97 and 2000-2002, a thermocline where temperatures rapidly decrease with depth, was formed at 50-70 m water depth. Nutrient depletion, specially for nitrate and phosphate, was extended down to approximately 50 m depth, which coincided with the surface mixed layer depth. In 1998 and 1999, however a very fluctuating thermocline was observed at 20-100 m water depth. In the photic zone (up to 100 m depth), depth integration of nitrate, phosphate and silicate ranged from 2.02 to $23.14\;gN/m^2$, from 0.87 to $4.05\;gP/m^2$ and from 35.67 to $176.21\;gSi/m^2$, respectively. As a result of changes in the water column structures, nutrient concentrations also showed fluctuation parallel to the changes of thermocline in the study area.

Effect of Saline Concentrations on Biological Nitrification in Batch Reactor

  • Lee, Young Joon;Nguyen, Viet Hoang;Nguyen, Hong Khanh;Pham, Tuan Linh;Kim, Gi Youn
    • 통합자연과학논문집
    • /
    • 제4권2호
    • /
    • pp.103-112
    • /
    • 2011
  • This study was carried out on 4 batch reactors to determine the specific ammonium oxidizing rate (SAOR), specific nitrate forming rate (SNFR) and inhibitory degree of nitrifying activities with saline concentrations. Under salt free condition ammonia was consumed during the reaction period within 200 min. When the salt level increased to 10, 20 and 30 g $NaClL^{-1}$ in reactor, ammonia depletion took 250, 300 and above 350 min, respectively. During concentration above 10 g $NaClL^{-1}$, there was nitrite accumulation. Also, at 30 g $NaClL^{-1}$ ammonia did not depleted and $NO_2{^-}$-N accumulated until the final reaction. Nitrate formation rates decreased with increasing salt concentration. SAOR and SNFR showed a decreasing trend as salinity concentrations were increased. The SAOR was reduced from 0.2 to 0.08 mg $NH_4{^+}$-N $g^{-1}VSS\;day^{-1}$ as the salt concentration increased from 0 to 30 g $NaClL^{-1}$. Similarly, the SNFR decreased from 0.26 kg $NO_3{^-}$-N $kg^{-1}VSS\;day^{-1}$ at saline free to 0.1 kg $NO_3{^-}$-N $kg^{-1}VSS\;day^{-1}$ at saline 30 g L-1. A severe inhibition of nitrifiers activity was observed at increased salt concentrations. The inhibition ratio of specific ammonium oxidation rates were 17, 47 and 60% on the reactor of 10, 20 and 30 g $NaClL^{-1}$ added, respectively. The inhibition ratio of specific nitrate forming rates also were inhibited 30, 53 and 62% on the reactor of 10, 20 and 30 g $NaClL^{-1}$ added, respectively. As the salinity concentrations increased from 0 to 30 mg $NaClL^{-1}$, the average MLSS concentration increased from 1,245 to 1,735 $mgL^{-1}$. The SS concentration of supernatant in reactor which settled about 30 minutes was not severely difference between concentration of salt free reactor and one of those high salt contained reactors.