• 제목/요약/키워드: deoxyguanosine kinase

검색결과 7건 처리시간 0.017초

Mutations within the Putative Active Site of Heterodimeric Deoxyguanosine Kinase Block the Allosteric Activation of the Deoxyadenosine Kinase Subunit

  • Park, In-Shik;Ives, David H.
    • BMB Reports
    • /
    • 제35권2호
    • /
    • pp.244-247
    • /
    • 2002
  • Replacement of the Asp-84 residue of the deoxyguanosine kinase subunit of the tandem deoxyadenosine kinase/deoxyguanosine kinase (dAK/dGK) from Lactobacillus acidophilus R-26 by Ala, Asn, or Glu produced increased $K_m$ values for deoxyguanosine on dGK. However, it did not seem to affect the binding of Mg-ATP. The Asp-84 dGK replacements bad no apparent effect on the binding of deoxyadenosine by dAK. However, the mutant dGKs were no longer inhibited by dGTP, normally a potent distal end-product inhibitor of dGK. Moreover, the allosteric activation of dAK activity by dGTP or dGuo was lost in the modified heterodimeric dAK/dGK enzyme. Therefore, it seems very likely that Asp-84 participates in dGuo binding at the active site of the dGK subunit of dAK/dGK from Lactobacillus acidophilus R-26.

Protein Engineering of Deoxynucleoside Kinase from Lactobacillus acidophilus: Effect of Site-Directed Mutagenesis on Microbial Growth

  • Park, Inshik;Kim, Eun-Ae;Bang, Keuk-Seung;Kim, Seok-Hwan;Kim, Gi-Nahm;Lee, Min-Kyung;Kil, Ji-Oeun
    • Preventive Nutrition and Food Science
    • /
    • 제6권1호
    • /
    • pp.79-81
    • /
    • 2001
  • Deoxynucleoside kinases exist as heterodimeric pairs specific for deoxyadenosine/deoxyguanosine kinase (dAK/dGK) and deoxyadenosine/deoxycytidine kinase (dAK/dCK). The aspartic acid-84 in dGK was mutated to alanine, asparagine and glutamic acid by site-directed mutagenesis. The mutation resulted in a drastic decease in dGK activity compared to the unmodified cloned enzyme while it increased production of dAK activity. The mutated dak/dgk genes, which synthesize tandem deoxyadenosine/deoxyguanosine kinase, were inserted back to the Lactobacillus acidophilus and Lactococcus lactis by electroporation to determine the effect of site-directed mutation of he enzymes on the microbial growth. However, no significant change was observed in cell growth and lactic acid production between wild type and mutant lactic acid bacteria.

  • PDF

Purification of Deoxycytidine Kinase from Various Human Leukemic Cells by End-product Analog Affinity Chromatography

  • Kim, Min-Young
    • BMB Reports
    • /
    • 제28권4호
    • /
    • pp.281-289
    • /
    • 1995
  • Homogeneous human deoxycytidine kinase was purified in one step from a variety of spontaneous human leukemic cells (T-ALL, B-ALL, B-CLL, AML, CML), and from cultured T-lymphoblast cells (MOLT-4) using the newly developed affinity medium, $dCp_4$-Sepharose. Starting with an ammonium sulfate fraction, purification was achieved in one step with the kinase being eluted from a column by the end product inhibitor, dCTP. The purified deoxycytidine kinase from T-ALL cells phosphorylated deoxyadenosine and deoxyguanosine, as well as deoxycytidine. The enzyme purified from T-ALL and B-CLL cells yielded one major band with a molecular weight of 52 kDa determined by SDS-polyacrylamide gel electrophoresis. AML and CML cells yielded one 52 kDa band and an extra band of 30 kDa molecular weight. On the other hand, B-ALL and MOLT-4 cells showed a low molecular weight band of 30 kDa only. However, the electrophoretic mobilities of enzymatic activity in 12% non-denaturing gels were identical for the dCyd kinase from all different kinds of leukemic cell lines, except that the B-ALL, B-CLL, and MOLT-4 cell preparations had an extra minor peak, all at the same position. dAdo and dCyd phosphorylating activities comigrated indicating that these activities are all associated with the same protein. Two new methods, a disk implantation method and a nitrocellulose powder method were used with a small amount of enzyme protein to raise polyclonal antibodies against dCyd kinase purified from T-ALL cells.

  • PDF

Effects of Resveratrol Supplementation on Oxidative Damage and Lipid Peroxidation Induced by Strenuous Exercise in Rats

  • Xiao, Ning-Ning
    • Biomolecules & Therapeutics
    • /
    • 제23권4호
    • /
    • pp.374-378
    • /
    • 2015
  • The purpose of the present study was to investigate the effects of resveratrol supplementation on oxidative damage and lipid peroxidation induced by strenuous exercise in rats. The rats were randomly divided into five groups: a sedentary control group, an exercise control group, and three treatment exercise groups administered increasing doses of resveratrol (25, 50, and 100 mg/kg body weight). Resveratrol was administered by oral gavage once daily for four weeks. At the end of the four-week period, the rats performed a strenuous exercise on the treadmill, and the levels of lactate dehydrogenase (LDH), creatine kinase (CK), malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-HNE), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were measured. The results showed that resveratrol supplementation had protective effects against strenuous exercise-induced oxidative damage and lipid peroxidation by lowering the levels of LDH, CK, MDA, 4-HNE, and 8-OHdG in the serum or muscle of rats. These beneficial effects are probably owing to the inherent antioxidant activities of resveratrol.

Protective Effects of EGCG on UVB-Induced Damage in Living Skin Equivalents

  • Kim, So-Young;Kim, Dong-Seok;Kwon, Sun-Bang;Park, Eun-Sang;Huh, Chang-Hun;Youn, Sang-Woong;Kim, Suk-Wha;Park, Kyoung-Chan
    • Archives of Pharmacal Research
    • /
    • 제28권7호
    • /
    • pp.784-790
    • /
    • 2005
  • In this study, we evaluate the effects of (-)-epigallocatechin-3-gallate (EGCG) on ultraviolet B(UVB)-irradiated living skin equivalents (LSEs). Histologically, UVB irradiation induced thinning of the LSE epidermis, whereas EGCG treatment led to thickening of the epidermis. Moreover, EGCG treatment protected LSEs against damage and breakdown caused by UVB exposure. Immunohistochemically, UVB-exposed LSEs expressed p53, Fas, and 8-hydroxy-deoxyguanosine (8-OHdG), all of which are associated with apoptosis. However, EGCG treatment reduced the levels of UVB-induced apoptotic markers in the LSEs. In order to determine the signaling pathways induced by UVB, Western blot analysis was performed for both c-Jun $NH_2$-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), which are associated with UVB-induced oxidative stress. UVB activated JNK in the epidermis and dermis of the LSEs, and EGCG treatment reduced the UVB-induced phosphorylation of JNK. In addition, p38 MAPK was also found to have increased in the UVB-exposed LSEs. Also, EGCG reduced levels of the phosphorylation of UVB-induced p38 MAPK. In conclusion, pretreatment with EGCG protects against UVB irradiation via the suppression of JNK and p38 MAPK activation. Our results suggest that EGCG may be useful in the prevention of UVB-induced human skin damage, and LSEs may constitute a potential substitute for animal and human studies.

Regulation of Gastric Acid Secretion of Liriope platyphylla Extract in Gastroesophageal Reflux Disease

  • Ahn, Sang Hyun;Choi, Il Shin;Kim, Ki Bong
    • 대한한의학회지
    • /
    • 제42권4호
    • /
    • pp.150-163
    • /
    • 2021
  • Objectives: The purpose of this study was to confirm the effects of Liriope platyphylla extract on relieving Gastroesophageal reflux disease (GERD) through regulation of acid secretion. Methods: 8-week-old ICR mice were divided into untreated control group (Ctrl), GERD elecitation group (GERDE), Omeprazole administrate group before GERD elicitation (OMA), and Liriope platyphylla extract administrate group before GERD elicitation (LPA). After inducing GERD, gross observation and histological examination were performed and ATP6V1B1 (ATPase H+ Transporting V1 Subunit B1), GRPR (Gastrin-releasing peptide receptor), COX-1 (Cyclooxygenase 1), 8-OHdG (8-hydroxy-2'-deoxyguanosine), Cathelicidin, p-JNK (phospho c-Jun N-terminal kinase) were observed to confirm the damage defense effect of the esophageal mucosa, acid secretion regulation, antioxidant, anti-inflammatory, mucosal protection, and apoptosis regulation Results: OMA and LPA showed lower levels of damage compared to GERDE in gross observation and histological examination. ATP6V1B1, GRPR, and 8-OHdG showed lower positive reactions in OMA and LPA than in GERDE. COX-1 were less positive in GERDE and OMA than in Ctrl, but showed higher secretion in LPA than in Ctrl. Cathelicidin showed a decreased positive reaction in GERDE, OMA and LPA compared to Ctrl, but the decrease in positive reaction was smaller in OMA and LPA compared to GERDE. p-JNK showed increased positive reaction in GERDE, OMA and LPA than in Ctrl, but the increase in the positive reaction was smaller in the OMA and LPA compared to GERDE. Conclusions: The effects of Liriope platyphylla extract on esophageal mucosal damage protection, acid secretion regulation, antioxidant, anti-inflammatory, mucosal protection and apoptosis regulation were confirmed.

Diallyl Disulfide Prevents Cyclophosphamide-Induced Hemorrhagic Cystitis in Rats through the Inhibition of Oxidative Damage, MAPKs, and NF-κB Pathways

  • Kim, Sung Hwan;Lee, In Chul;Ko, Je Won;Moon, Changjong;Kim, Sung Ho;Shin, In Sik;Seo, Young Won;Kim, Hyoung Chin;Kim, Jong Choon
    • Biomolecules & Therapeutics
    • /
    • 제23권2호
    • /
    • pp.180-188
    • /
    • 2015
  • This study investigated the possible effects and molecular mechanisms of diallyl disulfide (DADS) against cyclophosphamide (CP)-induced hemorrhagic cystitis (HC) in rats. Inflammation response was assessed by histopathology and serum cytokines levels. We determined the protein expressions of nuclear transcription factor kappa-B (NF-${\kappa}B$), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), oxidative stress, urinary nitrite-nitrate, malondialdehyde (MDA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Finally, we studied the involvement of mitogen-activated protein kinases (MAPKs) signaling in the protective effects of DADS against CP-induced HC. CP treatment caused a HC which was evidenced by an increase in histopathological changes, proinflammatory cytokines levels, urinary nitrite-nitrate level, and the protein expression of NF-${\kappa}B$, COX-2, iNOS, TNF-${\alpha}$, p-c-Jun N-terminal kinase (JNK), and p-extracellular signal regulated kinase (ERK). The significant decreases in glutathione content and glutathione-S-transferase and glutathione reductase activities, and the significant increase in MDA content and urinary MDA and 8-OHdG levels indicated that CP-induced bladder injury was mediated through oxidative DNA damage. In contrast, DADS pretreatment attenuated CP-induced HC, including histopathological lesion, serum cytokines levels, oxidative damage, and urinary oxidative DNA damage. DADS also caused significantly decreased the protein expressions of NF-${\kappa}B$, COX-2, iNOS, TNF-${\alpha}$, p-JNK, and p-ERK. These results indicate that DADS prevents CP-induced HC and that the protective effects of DADS may be due to its ability to regulate proinflammatory cytokines production by inhibition of NF-${\kappa}B$ and MAPKs expressions, and its potent anti-oxidative capability through reduction of oxidative DNA damage in the bladder.