• Title/Summary/Keyword: dentin core

Search Result 39, Processing Time 0.022 seconds

FINITE EIEMENT ANALYSIS OF STRESS DISTRIBUTIONS OF DENTIN BY POST AND CORE SYSTEMS (하악 소구치용 post and core systems의 치근 내부 응력분산 효과에 대한 유한요소법적 연구)

  • Hong, Hyun-Ja;Jeon, Young-Chan;Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.3
    • /
    • pp.397-412
    • /
    • 1995
  • The purpose of this study was to analyze the stress distribution in the dentin and post structures by the various post core materials and the amount of remaining coronal tooth structures. The 2-dimensional finite element models of mandibular 2nd premolars was divided into seven types according to the various amount of remaining coronal tooth structures. All types were modeled using equal length, diameter and shape of the post. 2 types of post and core materials were used : 1) cast gold post and core 2) stainless steel post and compsite resin core 10 Newton force was applied as follows 1) vertical force on occlusal fossa 2) $45^{\circ}$ oblique force on buccal surface of buccal cusp tip The results were as follows : 1. There was no apparent difference in the pattern of stress distribution according to the amount of remaining coronal tooth structure. 2. There was no apparent difference in the pattern of stress distribution within the dentin according to the post and core materials. A cast gold post and core generated lower dentin stress than a stainless steel post and resin core. 3. Max. dentinal stress resulting from vertical force was observed in the lingual side of dentin around the crown margin.This stress resulting from oblique force was observed in the lingual root surface of alveolar bone crest level.

  • PDF

MICRO-TENSILE BONDING STRENGTH OF REGIONAL PRIMARY MOLAR DENTIN (유구치 상아질의 각 부위에 적용된 수종의 복합레진 접착제의 미세인장접착강도에 관한 연구)

  • You, Jung-Eun;Choi, Yeong-Chul;Chio, Sung-Chul;Park, Jae-Hong
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.3
    • /
    • pp.348-357
    • /
    • 2009
  • The purpose of this study was to evaluate the micro-tensile bond strength (${\mu}TBS$) of four luting resin to regional dentin of human primary teeth. Dentin from non-carious primary molars were prepared from different regions (s, superficial dentin; d, deep dentin; c, cervical dentin), and divided into groups based on anatomical locations and types of luting resins (Scotchbond Multi-purpose : SB ; One-Step : OS ; AdheSE Bond : ASE ; G-Bond : GB) : SB-s, SB-d, SB-c; OS-s, OS-d, OS-c; ASE-s, ASE-d, ASE-c ; GB-s, GB-d, GB-c. Luting resins were used according to the manufacturers' instructions, to bond $Light-Core^{TM}$ Core Build-Up Composite) to the exposed dentin specimens in the light-curing mode. After storage for 1 day, ${\mu}TBS$ was tested at a cross-head speed of 1 mm/min. Data were analyzed with T-test and two-way ANOVA. The bonding interface and fractography analyses were performed with SEM. The results were as follows : 1. ${\mu}TBS$ to superficial dentin was significantly higher than to deep dentin for SB(p<0.05). But there were no significant differences in regional ${\mu}TBS$ among OS, ASE, GB(p>0.05). 2. There were no significant differences in ${\mu}TBS$ to superficial dentin among each groups. But, in deep dentin, ${\mu}TBS$ of SB-d was significantly lower than those of OS-d, ASE-d, and GB-d(p<0.05). ${\mu}TBS$ of OS-d was significantly higher than those of GB-d(p<0.05), but there were no significant differences in ${\mu}TBS$ of ASEd. There were no significant differences among ${\mu}TBS$ of ASE-d, OS-d, and GB-d.

  • PDF

A COMPARISON OF POST AND CORE TECHNIQUES WITH FINITE ELEMENT ANALYSIS (유한요소법에 의한 Post와 Core 형성법의 비교)

  • Cheong, Yong-Kee;Hur, Bock;Lee, Hee-Joo
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.70-86
    • /
    • 1996
  • The purpose of this study was to analyze the stress distribution in mandibular second premolars restored with different post and core techniques. Sixteen two-dimensional finite element model of mandibular second premolars restored with post and core and complete crown were developed according to the diameter, length, and material of post and core. Vertical force, 10N in magnitude, was applied first to the central fossa and then $45^{\circ}$ oblique force of same magnitude was applied to the buccal contact surface of buccal cusp. The obtained results were as follows : 1. Stress distribution within the dentin 1) Regardless of the material of the post and core and the diameter and length of the post, the pattern of stress distribution within the dentin was similar. 2) Maximum dentinal stress was observed on the lingual root surface of alveolar crest level with oblique loading and on lingual side of root dentin at the crown margin on vertical loading. 3) Cast post and cores produced the lowest dentinal stress concentrations and the highest stress concentration was observed in composite resin post and cores. 2. Stress distribution within the post and core 1) Within the amalgam and composite resin post and core, the patterns and maximum values of stress were similar. Maximum stress located at the central fossa of core portion on vertical loading and at the lingual junction of post and core with oblique loading. 2) Among the all post and cores, the cast post and core registered the highest stress concentration and maximum stress value within the post. Maximum stress located at the post apex on vertical loading and at lingual half of the post surface with oblique loading. 3) In case of Para-post and amalgam core, maximum stress located at the central fossa of core portion and lingual tip of the post head on vertical loading. With oblique loading, maximum stress located at the lingual half of the post surface.

  • PDF

Fabrication of a custom polyetherketoneketone post-and-core with digital technology

  • Ju-Hyoung Lee;Gyu-Heon Lee
    • Journal of Technologic Dentistry
    • /
    • v.46 no.1
    • /
    • pp.15-19
    • /
    • 2024
  • An ideal post material should have physical properties similar to those of dentin. Post materials with high elastic moduli may cause root fractures. This clinical report describes the treatment of a severely damaged tooth using a recently introduced material. Polyetherketoneketone (PEKK) is a semicrystalline high-performance thermoplastic polymer. PEKK is a promising material for custom post-and-core fabrication because of its elasticity close to that of dentin, good shock absorbance, machinability, and low cost. A laboratory scanner was used to digitize the conventional impression of a severely damaged maxillary right first molar. A custom PEKK post-and-core was designed and milled using computer-aided design and computer-aided manufacturing technology. Using the proposed technique, a custom PEKK post-and-core was fabricated accurately and human error was reduced. Restoration was luted with resin cement. Custom PEKK post-and-core restorations are a viable alternative for treating severely damaged teeth.

STRESS ANALYSIS OF ROOT AND SUPPORTING TISSUES BY VARIOUS POST CORE DESIGN (지대치 형태에 따른 Post core의 치근내부 및 지지조직의 응력분석)

  • Kim Jin;Vang Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.4
    • /
    • pp.468-481
    • /
    • 1993
  • The Purpose of this study was to analyze the stresses and displacements of various post and core. The Finite element models of central incisors were divided into seven types according to the various amount of remaining tooth structures. $10kgf/mm^2$ force was applied respectively as follows : 1) Horizontal on the labial surface 2) $26^{\circ}$ diagonal direction on the lingual surface. Material property, geometry, and load condition of each model were inputted to the two dimensional ANSYS 4.4A finite element program : stresses and displacements were analyzed. Results were follows : 1. In the case of $130^{\circ}$ shoulder post and core, Maximum tensile and shear stresses were observed in the crown margin. 2. Maximum shear stress was about 29% reduced by contrabevel. 3. In the case of 1mm axial tooth structure, Maximum tensile stress observed in the dentin. 4. In the case of but joint of cervix, Maximum stress concentration was observed in the dentin by the inclined and horizontal force. 5. Horizontal force produced the extraordinary high stresses in dentin and supporting structures. 6. The amount of remaining tooth structure affected the level of stress significantly and it determined the location of stress concentration.

  • PDF

SHEAR BOND STRENGTH OF COMPOSITE RESIN CORE USED IN COMBINATION WITH VARIOUS RESIN CEMENTS AND DENTIN BONDING AGENTS (레진 시멘트와 상아질접착제를 사용한 콤포지트 레진 코아의 전단결합강도에 관한 연구)

  • Kim Hyun-O;Vang Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.1
    • /
    • pp.30-40
    • /
    • 2004
  • Purpose : The purpose of this study was aimed to compare the shear bond strength on dentin of three dentin bonding agents and two resin cements used in conjunction with self-cured composite resin core material. Material and method : Control group and six experimental groups were divided for this study. Control group was designated as specimens bonded with Tenure$ A&B^{(R)}$. Experimental groups were as follows : PB-BL group : specimens bonded with Prime&Bond $NT^{(R)}$, $BondLink^{(R)}$ SB-BL group : specimens bonded with $^{(R)}$, BondLink$SingleBond^{(R)}$ PB group : specimens bonded with Prime&Bond $NT^{(R)}$ SB group : specimens bonded with $SingleBond^{(R)}$ PF group : specimens bonded with $Panavia-F^{(R)}$ BI group specimens bonded with Bistite $II^{(R)}$ All specimens were stored in $37^{\circ}C$ distilled water for 24 hours, followed by the shear bond strength was tested by universal testing machine. The data was analysed statistically by Mann-Whitney test. Results : 1. For Prime&Bond $NT^{(R)}$ and $SingleBonde^{(R)}$, the shear bond strength was 0.24 MPa and 7.19 MPa each by each, while Tenure $A&B^{(R)}$ group control was measured at 13.93 MPa (p<0.05). Especially for Prime&Bond $NT^{(R)}$ it did not get conjunction with dentin. 2. For Prime&Bond $NT^{(R)}$ and $SingleBond^{(R)}$ using $BondLink^{(R)}$, there was no significant difference as a result of 11.73 MPa and 14.00 MPa each by each (p<0.05). 3. For $Panavia-F^{(R)}$ and Bistite $II^{(R)}$, they showed the highest shear bond strength as measured by 18.24 MPa and 16.09 MPa each (p<0.05).

Effect of chlorhexidine application on the bond strength of resin core to axial dentin in endodontic cavity

  • Kim, Yun-Hee;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.4
    • /
    • pp.207-214
    • /
    • 2012
  • Objectives: This study evaluated the influence of chlorhexidine (CHX) on the microtensile bonds strength (${\mu}TBS$) of resin core with two adhesive systems to dentin in endodontic cavities. Materials and Methods: Flat dentinal surfaces in 40 molar endodontic cavities were treated with self-etch adhesive system, Contax (DMG) and total-etch adhesive system, Adper Single Bond 2 (3M ESPE) after the following surface treatments: (1) Priming only (Contax), (2) CHX for 15 sec + rinsing + priming (Contax), (3) Etching with priming (Adper Single Bond 2), (4) Etching + CHX for 15 sec + rinsing + priming (Adper Single Bond 2). Resin composite build-ups were made with LuxaCore (DMG) using a bulk method and polymerized for 40 sec. For each condition, half of specimens were submitted to ${\mu}TBS$ after 24 hr storage and half of them were submitted to thermocycling of 10,000 cycles between $5^{\circ}C$ and $55^{\circ}C$ before testing. The data were analyzed using ANOVA and independent t-test at a significance level of 95%. Results: CHX pre-treatment did not affect the bond strength of specimens tested at the immediate testing period, regardless of dentin surface treatments. However, after 10,000 thermocycling, all groups showed reduced bond strength. The amount of reduction was greater in groups without CHX treatments than groups with CHX treatment. These characteristics were the same in both self-etch adhesive system and total-etch adhesive system. Conclusions: 2% CHX application for 15 sec proved to alleviate the decrease of bond strength of dentin bonding systems. No significant difference was shown in ${\mu}TBS$ between total-etching system and self-etching system.

Influence of size-anatomy of the maxillary central incisor on the biomechanical performance of post-and-core restoration with different ferrule heights

  • Domingo Santos Pantaleon;Joao Paulo Mendes Tribst;Franklin Garcia-Godoy
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.2
    • /
    • pp.77-90
    • /
    • 2024
  • PURPOSE. The study aims to investigate the influence of the ferrule effect and types of posts on the stress distribution in three morphological types of the maxillary central incisor. MATERIALS AND METHODS. Nine models were created for 3 maxillary central incisor morphology types: "Fat" type - crown 12.5 mm, root 13 mm, and buccolingual cervical diameter 7.5 mm, "Medium" type - crown 11 mm, root 14 mm, and buccolingual cervical diameter 6.5 mm, and "Slim" type - crown 9.5 mm, root 15 mm, and buccolingual cervical diameter 5.5 mm. Each model received an anatomical castable post-and-core or glass-fiber post with resin composite core and three ferrule heights (nonexistent, 1 mm, and 2 mm). Then, a load of 14 N was applied at the cingulum with a 45° slope to the long axis of the tooth. The Maximum Principal Stress and the Minimum Principal Stress were calculated in the root dentin, crown, and core. RESULTS. Higher tensile and compression stress values were observed in root dentin using the metallic post compared to the fiber post, being higher in the slim type maxillary central incisor than in the medium and fat types. Concerning the three anatomical types of maxillary central incisors, the slim type without ferrule height in mm presented the highest tensile stress in the dentin, for both types of metal and fiber posts. CONCLUSION. Post system and tooth morphology were able to modify the biomechanical response of restored endodontically-treated incisors, showing the importance of personalized dental treatment for each case.

EFFECT OF TYPE AND CEMENTATION METHOD OF POST-CORE ON MICROLEAKAGE (포스트코어의 종류와 접착방법이 미세누출에 미치는 영향)

  • Yun Myoung-Jae;Lee Sun-Hyung;Yang Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.2
    • /
    • pp.225-233
    • /
    • 1994
  • The restorations of the severely damaged teeth by post core have been increased with the developement of endodontic procedures. But high failure rates of these procedures being reported, various restorative modifications were induced for successful treatments. Cast post-core and prefabricated post with core buildups are choice of treatment. The main causes of failure of the restorations are the fracture of post and core, root fracture, and recurrent caries due to microleakage. Recently, the acid etching technique and the use of dentin bonding agent at tooth surface to reduce the possible microleakage at the tooth-restoration interfaces were introduced. The object of this study was to measure and compare the microleakage by the types and cementation methods of post-core. For this study, forty extracted human anterior teeth were selected for specimen. After cleansing and routine endodontic procedures, anatomic crowns of each specimen were removed at the level of 2mm above the cementoenamel junction. Canals were preparated for post insertion and specimens were divided into four groups randomly. Post-cores were fabricated according to method for each group. Microleakage was measured by length of dye penetration at the tooth-restoration interfaces with measuring microscope at 50 magnification. Oneway ANOVA and t-test were performed for statistical analysis of resulting data. The following results were obtained from this study. 1. There wert significant statistical differences in degree of microleakage between each group (p<0.01). 2. Cast post-core cemented with ZPC (Group I) showed the most severe microleakage pattern$(1.5547{\pm}0.0872mm)$, and cast post-core cemented with adhesive resin cement after tooth surface treatment with dentin bonding agent (Group II) showed the least microleakage $(0.1497{\pm}0.0872mm)$. 3. Group IV revealed less dye penetrations than group III, but no statistical significance was seen between two groups.

  • PDF

The study on the shade color change that depends on the kind of zirconia core and the porcelain thickness (지르코니아 코어의 종류와 도재 두께에 따른 색상의 변화)

  • Yeom, Mi-Ok;Lee, Jong-Hyuk;Shin, Soo-Yeon;Sin, Seung-Chul;Cho, Ja-Won
    • Journal of Technologic Dentistry
    • /
    • v.32 no.4
    • /
    • pp.341-350
    • /
    • 2010
  • Purpose: This study focused on achieving desired shades by combining zirconia core with different thickness porcelain in order to make dental prostheses effectively. Methods: White and colored $LAVA^{TM}$ All Ceramic (3M-ESPE, Seefeld, Germany), and Zirkonzahn (Bruneck, Italy) Trans and prettau were used to have Zirconia. LAVATM Ceram (3M-ESPE, Germany) and ICE (Zirkonzahn, Italy) powder were used to have the porcelain. We made quadrilateral specimen of thickness 0.3mm, 0.5mm, 0.7mm and diameter 10 to use zirconia ceramics system of 2 kinds that color tone reappearance way is different and produced total 120 specimens to 4 experimental groups. We used Spectrophotometer to analyze color tone. Data's value getting by dispersal colorimetry period found L*, a*, b* value using Excel program. We used one-way ANOVA to use SPSS WIN 12.0 program. Results: All L*, a*, b* indexes of zirconia core and porcelain veneer in LAVA group and Zirkonzahn group were different. When you combine the white zirconia core of LAVA group with a porcelain veneer, the thickness of the porcelain must be more than 0.5mm to meet the standard target. When all the colored zirconia cores of LAVA group were combined with porcelain veneers, there was no significant difference from the standard target. When the zirconia cores of Zirkonzahn group are combined with porcelain veneers, the thinner thicknesses were closer to the standard tab than thicker thicknesses; however, there was a significant difference in all combinations, with Delta E* value indicating more than 3. Conclusion: When it comes to colored zirconia, which is the most popular, the thicknesses of both a core and a dentin veneer must be more than 0.3mm to get an appropriate shade. There is more possibility to get desirable shades when the thicknesses of a white core are thinner; however, they would be vulnerable to the environment and lose their color. When combine a zirconia core with a dentin veneer, using Zirkonzahn group needs more considerations in order to meet the standard target.