• Title/Summary/Keyword: dental resin composite

Search Result 521, Processing Time 0.027 seconds

A STUDY ON SURFACE ROUGHNESS OF COMPOSITE RESINS AFTER FINISHING AND POLISHING -an Atomic Force Microscope study (연마방법에 따른 복합레진의 활택도에 관한 연군 -Atomic Force Microscope를 이용한 연구)

  • Kim, Hyeong-Seob;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.4
    • /
    • pp.719-741
    • /
    • 1997
  • This study was undertaken to compare by Atomic Force Microscope the effects of various finishing and polishing instruments on surface roughness of filling and veneering composite resins. Seven composite resins were studied : Silux Plus (3M Dental Products, U.S.A.), Charisma (Heraeus Kulzer, Germany), Prisma THP (L.D.Caulk, Dentsply, U.S.A.), Photoclearfil (Kuraray, Japan), Cesead (Kuraray, Japan), Thermoresin LC (GC, Japan), Artglass (Heraeus Kulzer, Germany). Samples were placed and polymerized in holes (2mm thick and 8.5mm in diameter) machined in Teflon mold under glass plate, ensuring excess of material and moulded to shape with polyester matrix strip. Except control group (Polyester matrix strip), all experimental groups were finished and polishied under manufacturer's instructions. The finishing and polishing procedure were : carbide bur (E.T carbide set 4159, Komet, Germany), diamond bur (composite resin polishing bur set, GC, Japan), aluminum-oxide disc (Sof-Lex Pop-On, 3M Dental Products, U.S.A.), diamond-particle disc (Dia-Finish, Renfert Germany), white stone bur & rubber point( composite finishing kit, EDENTA, Swiss), respectively. Each specimens were evaluated for the surface roughness with Atomic Force Microscope (AutoProbe CP, Park Scientific Instruments, U.S.A.) under contact mode and constant height mode. The results as follows : 1. Except Thermoresin LC, all experimental composite resin groups showed more rougher than control group after finishing and polishing(p<0.1). 2. A surface as smooth as control group was obtained by $Al_{2}O_{3}$ disc all filling composite resin groups except Charisma and all veneering composite resin groups except Thermoresin LC(p<0.05). 3. In case of Thermoresin LC, there were no statistically significant differences before and after finishing and polishing(p>0.1). 4. Carbide bur, diamond bur showed rough surfaces in all composite resin groups, so these were inappropriate for the final polishing instruments.

  • PDF

A STUDY OF THE SHEAR BOND STRENGTH OF COMPOSITE RESIN TO LIGHT-CURING GLASS IONOMER CEMENTS (광중합형 글라스아이오노머 시멘트와 복합레진과의 전단결합강도에 관한 연구)

  • Kim, Deok;Min, Byung-Soon
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.447-459
    • /
    • 1994
  • The purpose of this study is to evaluate of shear bond strength of light-curing composite resin to light-curing glass ionomer cement. Composite resin and glass ionomer cement have been widely used as an esthetic filling materials in dental clinics. To achieve better clinical results, sandwich technic was developed with conpensating for disadvantages of these two materials. Especially, light-curing glass ionomer cement provided greately improved bonding strength of teeth or composite resin, and then excellent clinical results can be acquired. In this study, 6 commercial light-curing glass ionomer cements(3 commercial restorative materials : Fuji II LC, Variglass VLC, Vitremer, and 3 commercial lining materials : Fuji Lining LC, Baseline VLC, Vitrebond) were devided two groups. According to manufacturer's appointment, no surface treatment was referred to N groups. Supposing. of clinical practice, surface grinding with water spray at 320 grit sand paper, 40 seconds etching with 37% phosphoric acid, 20 seconds washing, 20 seconds air drying was referred to N groups. Totally 12 experimental groups were devided, and all 120 specimens from 10 specimens of each groups were made. After light-curing composite resin was bonded to light-curing glass ionomer cement, shear bond strength was tested by Instron universal testing machine between glass ionomer cement and composit resin. The data were analyzed statistically by Student's t-test and ANOVA. The obtained results were as follows; 1. In light-curing glass ionomer cement, restorative materials showed higher shear bond strength to composite resin than lining materials(p<0.05). 2. Variglass VLC of restorative material group and Baseline VLC of lining material group have highest shear bond strength to composite resin(p<0.001). 3. In light-curing glass ionomer cement, surface grinding and acid etching reduced shear bond strength to composite resin(p<0.001)}. 4. VGN group 1s highest shear bond strength to composite resin, VBE group is lowest shear bond strength to composite resin(p<0.001).

  • PDF

Polymerization Shrinkage Behavior Measured by Digital Image Correlation for Methacrylate-based and Silorane-based Composites During Dental Restoration (디지털 이미지 상관법을 이용한 Methacrylate기질과 Silorane기질 복합레진의 치아 수복 시 중합수축거동)

  • Park, Jung-Hoon;Choi, Nak-Sam
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.125-132
    • /
    • 2020
  • The polymerization shrinkage behavior of dimethacrylate-based composite (Clearfil AP-X, Kuraray) and silorane-based composite (Filtek P90, 3M ESPE) used for dental composite restorations was measured using digital image correlation method. The stress distribution on the surface of specimen was calculated by finite element analysis with equivalent elastic modulus and was compared with the measured shrinkage distribution. Camera images were monitored by a CCD camera during and after the irradiation of light. As a result of the DIC analysis, a non-uniform shrinkage distribution was observed in both composite resins, and the resin core inside the ring specimen had free flowability, leading to in greater shrinkage strain than the resin/ring interfacial region. It was observed that as the distance from the center of the resin increased, the radial average shrinkage strain decreased. The radial average shrinkage strain during light irradiation occurred to be 33% for P90 and 57% for AP-X of the entire strain at the end of the test. The shrinkage behavior of P90 and AP-X was measured to be significantly different from each other during light irradiation. In the resin near the resin/ring interface, it was confirmed that the tensile strain rapidly formed to increase after light irradiation, causing a tensile stressed, interface weak.

CHANGES OF TENSILE BOND STRENGTH ACCORDING TO THE DIFFERENCE IN LINING MATERIALS AND LINING AREA (이장재와 이장면적의 차이에 따른 인장결합강도의 변화)

  • Park, Jong-Duk;Lee, Yong-Woo;Ohn, Yeong-Suck;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.443-460
    • /
    • 1998
  • The purpose of this study was to estimate the changes of tensile bond strength according to the difference in lining materials and lining area. Seventy non-carious extracted human molars were used in the present study, and they were randomly assigned into 2 experimental groups according to the difference in lining materials. Each experimental group was subdivided into 3 groups according to the difference in lining area. Circular cavities were prepared on the dentin surface to a diameter of 1.5mm, 2.0mm, 2.5mm and the prepared cavities were filled with Fuji II LC( Glass Ionomer Cement : GIC) or Dycal. Dentin specimens without circular cavity were used as control group. The primer and bonding agent of All-Bond 2 and composite resin (Z-100, 3M Dental Products, U. S. A.) were applied to the exposed dentin surface with or without lining. Tensile bond strengths for the experimental specimens were then measured. To examine the interface between dentin and liner & between liner and composite resin, two specimens from each group were fabricated and observed under the SEM. The results were as follows. 1. Tensile bond strength for the specimens lined with GIC was higher than that for specimens lined with Dycal. However, there was no significant difference between two groups(p>0.05). 2. Tensile bond strength for the specimens lined with GIC in a diameter of 1.5mm(GIC-1.5mm lining group) was statistically higher than that for the GIC-2.0mm lining group and GIC-2.5mm lining group(p<0.05). 3. Tensile bond strength for the specimens lined with Dycal in a diameter of 2.5mm (Dycal-2.5mm lining group)was statistically lower than that for Dycal-1.5mm lining group and Dycal-2.0mm lining group(p<0.05). 4. It was possible to observe the good adhesion of the resin composite to the GIC and the presence of a fissure between GIC and dentin all along the interface. Interfacial gaps of 7.2-$72.2{\mu}m$ between GIC and dentin were observed. The interfacial gap between GIC and dentin at the cavity base was greater. However, the gap was gradually decreased toward the occlusal portion. 5. It was possible to observe the poor adhesion of the resin composite to the Dycal. The detachment of Dycal was occurred all along the composite resin-Dycal interface, and the gaps of 2.0-$30.1{\mu}m$ were formed. In all the specimens, polymerization shrinkage of resin composite caused the detachment of Dycal from the body of Dycal. At a Dycal-dentin interface. it was possible to observe the good adhesion. but poor adhesion with interfacial gap of 2.9-$26.8{\mu}m$ was observed partially.

  • PDF