• Title/Summary/Keyword: dental resin

Search Result 1,266, Processing Time 0.044 seconds

Bond strength of denture base resin repaired according to contamination (의치상 수리면 오염원에 따른 수지의 결합강도)

  • Jung, Kyung-Pung
    • Journal of Technologic Dentistry
    • /
    • v.25 no.1
    • /
    • pp.71-79
    • /
    • 2003
  • The purpose of this study was to investigate bond strength of denture base resin repaired according to contamination. One commercial denture base resin and two different kinds of relines resin were tested; Lusiton 199(denture base resin), Vertex(reline resin) and TokusoRebase(repair resin). The specimens were processed according to the manufacturer's instructions to cured denture base resin(polymethylmethacrylate; PMMA) and reline resin. Bond strengths were examined by use of a three-point transverse flexural strength test. Data were analyzed with two-factor analysis of variance and Duncan's post-hoc test at $\alpha$=0.05. Generally, the bondstrength of heat-cured resin(Lusiton 199) was higher than the other resins. The contaminations produced an decrease in bond strength. Therefore the contamination, such as saliva or water must be avoided during the laboratory repair procedures.

  • PDF

Effect of solution temperature on the mechanical properties of dual-cure resin cements

  • Kang, En-Sook;Jeon, Yeong-Chan;Jeong, Chang-Mo;Huh, Jung-Bo;Yun, Mi-Jung;Kwon, Yong-Hoon
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.133-139
    • /
    • 2013
  • PURPOSE. This study was to evaluate the effect of the solution temperature on the mechanical properties of dualcure resin cements. MATERIALS AND METHODS. For the study, five dual-cure resin cements were chosen and light cured. To evaluate the effect of temperature on the specimens, the light-cured specimens were immersed in deionized water at three different temperatures (4, 37 and $60^{\circ}C$) for 7 days. The control specimens were aged in a $37^{\circ}C$ dry and dark chamber for 24 hours. The mechanical properties of the light-cured specimens were evaluated using the Vickers hardness test, three-point bending test, and compression test, respectively. Both flexural and compressive properties were evaluated using a universal testing machine. The data were analyzed using a two way ANOVA with Tukey test to perform multiple comparisons (${\alpha}$=0.05). RESULTS. After immersion, the specimens showed significantly different microhardness, flexural, and compressive properties compared to the control case regardless of solution temperatures. Depending on the resin brand, the microhardness difference between the top and bottom surfaces ranged approximately 3.3-12.2%. Among the specimens, BisCem and Calibra showed the highest and lowest decrease of flexural strength, respectively. Also, Calibra and Multilink Automix showed the highest and lowest decrease of compressive strength, respectively compared to the control case. CONCLUSION. The examined dual-cure resin cements had compatible flexural and compressive properties with most methacrylate-based composite resins and the underlying dentin regardless of solution temperature. However, the effect of the solution temperature on the mechanical properties was not consistent and depended more on the resin brand.

THE SHEAR BOND STRENGTH OF RESIN TEETH TO THE DENTURE BASE RESIN (레진치와 의치상 레진간의 전단 결합강도에 관한 연구)

  • Song, Young-Kuk;Jung, Young-Wan;Jin, Tai-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.2
    • /
    • pp.235-241
    • /
    • 1999
  • The bond failure of resin teeth In denture base resin is one of the failure in prosthodontic treatment. The purpose of this study was to evaluate the bond strength of artificial resin teeth to the denture base resins. Specimens were made with heat curing acrylic resins (Vertex Rs, Lucitone 199) and artificial resin teeth (Tiger, Trubyte biotone, Endura, Orthosit, Tubyte bioform IPN) and the bond strength were measured with testing machine(Zwick. Germany) and the mode of bond failure were observed. The results were as follows; 1. The bond strength of Vertex Rs to artificial resin teeth was the highest in Tubyte biotone, and It was the lowest in Tiger and Trubyte bioform IPN. 2. The bond strength of Lucitone 199 to artificial resin teeth were higher in Orthosit and Trubyte bioform IPN than in Tiger and Trubyte biotone. 3. The bond strength of Trubyte biotone to Vertex Rs was higher than to Lucitone 199 and that of the Trubyte bioform IPN to Lucitone 199 was higher than to Vertex Rs. 4. Nearly all bond failures of specimens occured cohesively within the resin teeth.

  • PDF

전부 무치악테이스의 심미적고려

  • Jo, Seong-Am
    • The Journal of the Korean dental association
    • /
    • v.32 no.3 s.298
    • /
    • pp.211-214
    • /
    • 1994
  • 90년에 접어들어, 임프란트보철물의 금속구조물을 완성하는데 있어서 단순한 wax-up에 의하기 보다는 Gold-cylinder(보철물과 연결되는 귀금속합금원통)주위에 resin으로 이는 resin-wing이라하여 일정한 두께의 Block을 붙여서 상품화하고 있다. 이를 사용하면 기공할때, 두께를 어느정도로 하여야 할까하는 신경을 쓸 필요없이 Resin-sing을 wax로 이어 주기만 하면 된다.

  • PDF

Luting between Resin Cement and Dental Prosthetic Materials (레진시멘트와 보철재료와의 접착)

  • Kim, Kwang-Mahn
    • The Journal of the Korean dental association
    • /
    • v.53 no.3
    • /
    • pp.195-200
    • /
    • 2015
  • Cementation is the last procedure and an important factor to access successful fixed prosthodontic treatment. Even though there are many kinds of luting materials in dental field, the resin cements are popularly used in now. Metals, polymers and ceramics are used as a material of fixed dental prosthesis. The bonding mechanisms between teeth and fixed restorations are composed of mechanical and chemical mechanism. In dentistry, we are relying on mechanical bonding, but we tried to get chemical bonding and many ways are introduced. So, we have to approach luting procedure differently by the materials of prosthesis for clinical success. In this article, let us think the proper cementation ways according to each prosthesis material.

Effect of immersion into solutions at various pH on the color stability of composite resins with different shades

  • Moon, Ji-Deok;Seon, Eun-Mi;Son, Sung-Ae;Jung, Kyoung-Hwa;Kwon, Yong-Hoon;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.4
    • /
    • pp.270-275
    • /
    • 2015
  • Objectives: This study examined the color changes of a resin composite with different shades upon exposure to water with different pH. Materials and Methods: Nanohybrid resin composites (Filtek Z350XT, 3M ESPE) with four different shades (A2, A3, B1, and B2) were immersed in water with three different pH (pH 3, 6, and 9) for 14 day. The CIE $L^*a^*b^*$ color coordinates of the specimens were evaluated before and after immersion in the solutions. The color difference (${\Delta}E^*$) and the translucency parameter (TP) were calculated using the color coordinates. Results: ${\Delta}E^*$ ranged from 0.33 to 1.58, and the values were affected significantly by the pH. The specimens immersed in a pH 6 solution showed the highest ${\Delta}E^*$ values (0.87 - 1.58). The specimens with a B1 shade showed the lowest ${\Delta}E^*$ change compared to the other shades. TP ranged from 7.01 to 9.46 depending on the pH and resin shade. The TP difference between before and after immersion in the pH solutions was less than 1.0. Conclusions: The resulting change of color of the tested specimens did not appear to be clinically problematic because the color difference was < 1.6 in the acidic, neutral, and alkaline solutions regardless of the resin shade, i.e., the color change was imperceptible.

Effects of Various Diluents Included in the Resin Matrices on the Characteristics of the Dental Composites (레진 기질에 포함된 희석제들이 치과용 복합 재료의 특성 변화에 미치는 영향)

  • Yoo, Sun-Hwa;Kim, Chang-Keun
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.153-157
    • /
    • 2009
  • The resin matrix in the dental composite is generally composed of 2,2-bis[4-(2-hydroxy-3-methacryloyloxy propoxy) phenyl] propane (Bis-GMA) as a base resin and triethylene glycol dimethacrylate (TEGDMA) as a diluent for the reduction of viscosity. The applications of dental composite were often limited in dentistry due to the relatively large amounts of volumetric shrinkage during polymerization and water uptake caused by the addition of TEGDMA to the resin matrix. In this study, in order to solve problems stemmed from the TEGDMA by reducing amount of diluent added to resin matrix, diethylene glycol dimethacrylate (DEGDMA) and ethylene glycol dimethacrylate (EGDMA) were explored as new diluents. A decrease in the volumetric shrinkage and an increase in the mechanical strength were observed by replacing TEGDMA in the dental composite to DEGDMA (or EGDMA). Reduction in the mechanical strength of the dental composite containing DEGDMA (or EGDMA), was not serious in comparison with that of the dental composite containing TEGDMA after water uptake.

Dental Restorative Composite Resins Containing Asymmetric Spiro Orthocarbonate for the Reduction of Volumetric Shrinkage (비대칭 스파이로 오르토카보네이트가 포함된 저수축 치아 수복재)

  • 황미선;김창근
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.321-327
    • /
    • 2004
  • The applications of dental restorative composite resins containing 2,2-bis [4-(2-hydroxy-3-me-thacryloyloxy propoxy) phenyl] propane as a base resin, and triethylene glycol dimethacrylate, as a diluent, were often limited in dentistry due to the relatively large amount of volumetric shrinkage that occurs during the curing reaction. In this study, in order to reduce volumetric shrinkage of the current dental restorative composite resin, asymmetric spiro orthocarbonates were synthesized and then the characteristics of resin composites containing them were explored. The volumetric shrinkage of the dental composites containing spiro orthocarbonates was decreased approximately 45%. However, the curing characteristics and mechanical properties of the new dental composites were slightly poor than those of the commercially available dental composite.

Evaluation of abrasion for non-abrasive denture cleanser

  • Lee, Sang-Min;Min, Ji-Hyun;Choi, Jong-Hoon
    • Journal of Korean society of Dental Hygiene
    • /
    • v.21 no.2
    • /
    • pp.99-107
    • /
    • 2021
  • Objectives: To compare and evaluate the degree of abrasion of the denture base resin according to the type of denture cleansers. Methods: Denture base resin specimens were prepared and dried. The resin specimens were installed in the automatic brushing machine so that the toothbrush weighed 200 g. The brushing was performed 1,000 times each, a total of 10,000 times using (1) distilled water (DW), (2) non-abrasive cleanser (NAC), and (3) toothpaste (TP), respectively. Thirty specimens were allocated for each group. The thickness of abrasion by brushing was calculated by converting the weight of the specimen. Results: In all DW, NAC, and TP groups, significant differences were found in the average amount of abrasion of the resin specimen due to 1,000 to 10,000 brushings (p<0.001). The average abrasion amount of the resin specimen due to brushing 10,000 times was 2.31±1.20 ㎛ in DW group, 2.52±0.25 ㎛ in NAC group, 6.50±0.60 ㎛ in TP group, and the amount of abrasion in the TP group was statistically significant compared to other groups (p<0.001). Conclusions: The use of TP is not recommended as a method for maintaining the longevity of dentures and for oral health, and NAC was considered to be possible to be used as a denture cleanser because it had a similar amount of abrasion of that of DW.

Comparison of surface characterization according to surface treatment of composite resin inlay (복합레진 인레이의 표면처리방법에 따른 표면특성 비교)

  • Lee, Myung-Jin;Choi, Yu-Ri;Kang, Min-Kyung
    • Journal of Korean society of Dental Hygiene
    • /
    • v.19 no.2
    • /
    • pp.307-315
    • /
    • 2019
  • Objectives: The aim of this study was to investigate the characterization of composite resin inlay surface with silane and non-thermal atmospheric pressure plasma treatment. Methods: Composite resin inlay was used as a specimen, which was treated by sandblasting + silane and sandblasting + plasma. The untreated specimens were assigned to the control group. Specimens were analyzed for surface roughness, color change, and chemical composition. Statistical analyses were performed using one-way ANOVA test (p<0.05). Results: The present findings showed that the roughness and color changes of the plasma-treated surface were significantly lower than those of the silane-treated surface. In addition, a change in the chemical composition was observed on the plasma-treated surface. Conclusions: Based on the results, non-thermal atmospheric pressure plasma could be a potential tool for the cementation of composite resin inlay.