• Title/Summary/Keyword: density-functional theory

Search Result 501, Processing Time 0.028 seconds

The Embedded Atom Method Analysis of the Nickel (Nickel의 Embedded Atom Method 해석)

  • 정영관;김경훈;이근진;김종수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.572-575
    • /
    • 1997
  • The embedded atom method based on density functional theory was developed as a new means for calculating ground state properties of realistic metal system by Murray S. Daw, Stephen M. Foiles and Michael I. Baskes. In the paper, we had corrected constitutive formulae and parameters on the nickel for the purpose of doing Embedded Atom Method analysis. And then we have computed the properties of the nickel on the fundamental scale of the atomic structure. In result, simulated ground state properties, such as the lattice constant, elastics constants and sublimation energy, show good agreement with Daw's simulation data and with experimental data.

  • PDF

Theoretical Investigation of Water Adsorption Chemistry of CeO2(111) Surfaces by Density Functional Theory (전자밀도함수이론을 이용한 세륨 산화물의 (111) 표면에서 일어나는 물 흡착 과정 분석)

  • Choi, Hyuk;Kang, Eunji;Kim, Hyun You
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.267-271
    • /
    • 2020
  • Cerium oxide (ceria, CeO2) is one of the most wide-spread oxide supporting materials for the precious metal nanoparticle class of heterogeneous catalysts. Because ceria can store and release oxygen ions, it is an essential catalytic component for various oxidation reactions such as CO oxidation (2CO + O2 2CO2). Moreover, reduced ceria is known to be reactive for water activation, which is a critical step for activation of water-gas shift reaction (CO + H2O → H2 + CO2). Here, we apply van der Waals-corrected density functional theory (DFT) calculations combined with U correction to study the mechanism of water chemisorption on CeO2(111) surfaces. A stoichiometric CeO2(111) and a defected CeO2(111) surface showed different water adsorption chemistry, suggesting that defected CeO2 surfaces with oxygen vacancies are responsible for water binding and activation. An appropriate level of water-ceria chemisorption energy is deduced by vdW-corrected non-local correlation coupled with the optB86b exchange functional, whereas the conventional PBE functional describes weaker water-ceria interactions, which are insufficient to stabilize (chemisorb) water on the ceria surfaces.

A Study on the Band Characteristics of ZnSe Thin Film with Zinc-blende Structure (Zinc Blende 구조를 가지는 ZnSe 결정의 밴드 특성에 관한 연구)

  • Park, Jeong-Min;Kim, Hwan-Dong;Yoon, Do-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.3
    • /
    • pp.145-151
    • /
    • 2011
  • ZnSe, as a II-VI compound semiconductor which has a wide band gap in the visible region is applicable to the various fields such as laser diode, display and solar cell. By using the electrochemical deposition method, ZnSe thin film was synthesized on the ITO glass substrate. The synthesis of ZnSe grains and their structure having zinc blende shape were verified through the analysis of XRD and SEM. UV spectrophotometric method determined the band gap as the value of 2.76 eV. Applying the DFT (Density Functional Theory) in the molecular dynamics, the band structure of ZnSe grains was analyzed. For ZnSe grains with zinc blende structure, the band structure and its density of state were simulated using LDA (Local Density Approximation), PBE (Perdew Burke Ernzerhof), and B3LYP (Becke, 3-parameter, Lee-Yang-Parr) functionals. Among the calculations of energy band gap upon each functional, the simulated one of 2.65 eV based on the B3LYP functional was mostly near by the experimental measurement.

Density Functional Theoretical Study on Intermolecular Interactions of 3,6-Dihydrazino-1,2,4,5-tetrazine Dimers

  • Hu, Yin;Ma, Hai-Xia;Li, Jun-Feng;Gao, Rong;Song, Ji-Rong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2897-2902
    • /
    • 2010
  • Seven fully optimized geometries of 3,6-dihydrazino-1,2,4,5-tetrazine (DHT) dimers have been obtained with density functional theory (DFT) method at the B3LYP/$6-311++G^{**}$ level. The intermolecular interaction energy was calculated with zero point energy (ZPE) correction and basis set superposition error (BSSE) correction. The greatest corrected intermolecular interaction energy of the dimers is $-23.69\;kJ{\cdot}mol^{-1}$. Natural bond orbital (NBO) analysis is performed to reveal the origin of the interaction. Based on the vibrational analysis, the changes of thermodynamic properties from the monomers to dimer with the temperature ranging from 200.0 K to 800.0 K have been obtained using the statistical thermodynamic method. It was found that the hydrogen bonds dominantly contribute to the dimers, while the binding energies are not only determined by hydrogen bonding. The dimerization process can not occur spontaneously at given temperatures.

Rh-doped carbon nanotubes as a superior media for the adsorption of O2 and O3 molecules: a density functional theory study

  • Cui, Hao;Zhang, Xiaoxing;Yao, Qiang;Miao, Yulong;Tang, Ju
    • Carbon letters
    • /
    • v.28
    • /
    • pp.55-59
    • /
    • 2018
  • Transition-metal-embedded carbon nanotubes (CNTs) have been accepted as a novel type of sensing material due to the combined advantage of the transition metal, which possesses good catalytic behavior for gas interaction, and CNTs, with large effective surface areas that present good adsorption ability towards gas molecules. In this work, we simulate the adsorption of $O_2$ and $O_3$ onto Rh-doped CNT in an effort to understand the adsorbing behavior of such a surface. Results indicate that the proposed material presents good adsorbing ability and capacities for these two gases, especially $O_3$ molecules, as a result of the relatively large conductivity changes. The frontier molecular orbital theory reveals that the conductivity of Rh-CNT would undergo a decrease after the adsorption of two such oxidizing gases due to the lower electron activity and density of this media. Our calculations are meaningful as they can supply experimentalists with potential sensing material prospects with which to exploit chemical sensors.

Initial Reaction of Hexachlorodisilane on Amorphous Silica Surface for Atomic Layer Deposition Using Density Functional Theory

  • Kim, Ki-Young;Yang, Jin-Hoon;Shin, Dong-Gung;Kim, Yeong-Cheol
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.5
    • /
    • pp.443-447
    • /
    • 2017
  • The initial reaction of hexachlorodisilane ($Si_2Cl_6$, HCDS) on amorphous silica ($SiO_2$) surface for atomic layer deposition was investigated using density functional theory. Two representative reaction sites on the amorphous $SiO_2$ surface for HCDS reaction, a surface hydroxyl and a two-membered ring, were considered. The reaction energy barrier for HCDS on both sites was higher than its adsorption energy, indicating that it would desorb from the surface rather than react with the surface. At high temperature range, some HCDSs can have kinetic energy high enough to overcome the reaction energy barrier. The HCDS reaction on top of the reacted HCDS was investigated to confirm its self-limiting characteristics.

2차원 층상 물질인 GaS, GaSe의 Van der Waals 상호작용에 대한 제일원리연구

  • Cha, Seon-Gyeong;An, Da-Bin
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.400-404
    • /
    • 2015
  • 2차원 물질인 metal mono chalcogenides(MMC) 중 GaS와 GaSe를 대상으로 하여 층과 층 사이의 van der Waals(vdW) 상호작용을 density functional theory(DFT) 계산을 이용해 연구하였다. Local density approximation(LDA)와 generalized gradient approximation (GGA)의 두 가지 다른 exchange correlation functional을 이용하고, 또한 두 개의 층 사이에 작용하는 van der Waals 상호작용을 고려한 LDA-D2, GGA-D2 계산을 수행하였다. 이와 같은 네 가지 방법으로 층간거리를 바꾸어 binding energy curve를 계산하였다. 그 결과 GGA-D2계산이 MMC의 층간 상호 작용을 가장 잘 기술하였다.

  • PDF