• 제목/요약/키워드: density visualization

검색결과 159건 처리시간 0.028초

The interaction between helium flow within supersonic boundary layer and oblique shock waves

  • Kwak, Sang-Hyun;Iwahori, Yoshiki;Igarashi, Sakie;Obata, Sigeo
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.75-78
    • /
    • 2004
  • Various jet engines (Turbine engine family and RAM Jet engine) have been developed for high speed aircrafts. but their application to hypersonic flight is restricted by principle problems such as increase of total pressure loss and thermal stress. Therefore, the development of next generation propulsion system for hypersonic aircraft is a very important subject in the aerospace engineering field, SCRAM Jet engine based on a key technology, Supersonic Combustion. is supposed as the best choice for the hypersonic flight. Since Supersonic Combustion requires both rapid ignition and stable flame holding within supersonic air stream, much attention have to be given on the mixing state between air stream and fuel flow. However. the wider diffusion of fuel is expected with less total pressure loss in the supersonic air stream. So. in this study the direction of fuel injection is inclined 30 degree to downstream and the total pressure of jet is controlled for lower penetration height than thickness of boundary layer. Under these flow configuration both streams, fuel and supersonic air stream, would not mix enough. To spread fuel wider into supersonic air an aerodynamic force, baroclinic torque, is adopted. Baroclinic torque is generated by a spatial misalignment between pressure gradient (shock wave plane) and density gradient (mixing layer). A wedge is installed in downstream of injector orifice to induce an oblique shock. The schlieren optical visualization from side transparent wall and the total pressure measurement at exit cross section of combustor estimate how mixing is enhanced by the incidence of shock wave into supersonic boundary layer composed by fuel and air. In this study non-combustionable helium gas is injected with total pressure 0.66㎫ instead of flammable fuel to clarify mixing process. Mach number 1.8. total pressure O.5㎫, total temperature 288K are set up for supersonic air stream.

  • PDF

횡단유동내 인젝터 홀의 위치에 따른 제트의 분무 특성 (Spray Characteristics of Jet According to Position of Injector Hole in Cross Flow)

  • 최명환;신동수;;손민;구자예
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.905-911
    • /
    • 2017
  • 공기와 물을 사용하여 인젝터의 위치와 운동량 플럭스 비가 수직유동이 횡단유동장내의 수직분사 제트에 미치는 영향을 정성적으로 연구하고 도시하였다. 운동량 플럭스 비를 고정하고 인젝터 홀의 위치를 변화시키고 역으로 인젝터 홀의 위치를 고정하고 운동량 플럭스 비를 변화시켰다. 이미지 가시화는 고속카메라를 이용하여 Shadowgraph 기법을 사용하였다. 가시화된 이미지는 밀도구배강도 이미지를 통하여 분무의 차이를 비교하였다. 장치의 x/d가 증가할수록 제트의 분열 높이가 낮아지며 분무 각도 또한 감소하는 것을 관측하였다. x/d가 0일 때는 어떠한 운동량 플럭스 비에서도 분무가 바닥과 천장에 닿게 되는 결과를 보였다.

  • PDF

STUDY OF CORRELATION BETWEEN WETTED FUEL FOOTPRINTS ON COMBUSTION CHAMBER WALLS AND UBHC IN ENGINE START PROCESSES

  • KIM H.;YOON S.;LAI M.-C.
    • International Journal of Automotive Technology
    • /
    • 제6권5호
    • /
    • pp.437-444
    • /
    • 2005
  • Unburned hydrocarbon (UBHC) emissions from gasoline engines remain a primary engineering research and development concern due to stricter emission regulations. Gasoline engines produce more UBHC emissions during cold start and warm-up than during any other stage of operation, because of insufficient fuel-air mixing, particularly in view of the additional fuel enrichment used for early starting. Impingement of fuel droplets on the cylinder wall is a major source of UBHC and a concern for oil dilution. This paper describes an experimental study that was carried out to investigate the distribution and 'footprint' of fuel droplets impinging on the cylinder wall during the intake stroke under engine starting conditions. Injectors having different targeting and atomization characteristics were used in a 4-Valve engine with optical access to the intake port and combustion chamber. The spray and targeting performance were characterized using high-speed visualization and Phase Doppler Interferometry techniques. The fuel droplets impinging on the port, cylinder wall and piston top were characterized using a color imaging technique during simulated engine start-up from room temperature. Highly absorbent filter paper was placed around the circumference of the cylinder liner and on the piston top to collect fuel droplets during the intake strokes. A small amount of colored dye, which dissolves completely in gasoline, was used as the tracer. Color density on the paper, which is correlated with the amount of fuel deposited and its distribution on the cylinder wall, was measured using image analysis. The results show that by comparing the locations of the wetted footprints and their color intensities, the influence of fuel injection and engine conditions can be qualitatively and quantitatively examined. Fast FID measurements of UBHC were also performed on the engine for correlation to the mixture formation results.

CONCEPTUAL DESIGN OF THE SODIUM-COOLED FAST REACTOR KALIMER-600

  • Hahn, Do-Hee;Kim, Yeong-Il;Lee, Chan-Bock;Kim, Seong-O;Lee, Jae-Han;Lee, Yong-Bum;Kim, Byung-Ho;Jeong, Hae-Yong
    • Nuclear Engineering and Technology
    • /
    • 제39권3호
    • /
    • pp.193-206
    • /
    • 2007
  • The Korea Atomic Energy Research Institute has developed an advanced fast reactor concept, KALIMER-600, which satisfies the Generation IV reactor design goals of sustainability, economics, safety, and proliferation resistance. The concept enables an efficient utilization of uranium resources and a reduction of the radioactive waste. The core design has been developed with a strong emphasis on proliferation resistance by adopting a single enrichment fuel without blanket assemblies. In addition, a passive residual heat removal system, shortened intermediate heat-transport system piping and seismic isolation have been realized in the reactor system design as enhancements to its safety and economics. The inherent safety characteristics of the KALIMER-600 design have been confirmed by a safety analysis of its bounding events. Research on important thermal-hydraulic phenomena and sensing technologies were performed to support the design study. The integrity of the reactor head against creep fatigue was confirmed using a CFD method, and a model for density-wave instability in a helical-coiled steam generator was developed. Gas entrainment on an agitating pool surface was investigated and an experimental correlation on a critical entrainment condition was obtained. An experimental study on sodium-water reactions was also performed to validate the developed SELPSTA code, which predicts the data accurately. An acoustic leak detection method utilizing a neural network and signal processing units were developed and applied successfully for the detection of a signal up to a noise level of -20 dB. Waveguide sensor visualization technology is being developed to inspect the reactor internals and fuel subassemblies. These research and developmental efforts contribute significantly to enhance the safety, economics, and efficiency of the KALIMER-600 design concept.

횡단유동내 인젝터 홀의 위치에 따른 제트의 분무 특성 (Spray Characteristics of Jet According to Position of Injector Hole in Crossflow)

  • 최명환;신동수;;손민;구자예
    • 한국추진공학회지
    • /
    • 제22권5호
    • /
    • pp.88-96
    • /
    • 2018
  • 공기와 물을 사용하여 인젝터의 위치와 운동량 플럭스 비가 수직유동이 횡단유동장내의 수직 분사 제트에 미치는 영향을 정성적으로 연구하고 도시하였다. 운동량 플럭스 비를 고정하고 인젝터 홀의 위치를 변화시킨 후 역으로 인젝터 홀의 위치를 고정하고 운동량 플럭스 비를 변화시켰다. 이미지 가시화는 고속카메라를 이용하여 Shadowgraph 기법을 사용하였다. 가시화된 이미지는 밀도구배강도 이미지를 통하여 분무의 차이가 비교되었다. 장치의 x/d가 증가할수록 액주 기둥의 높이가 낮아지는 것을 확인하였다. x/d가 0일 때는 어떤 운동량 플럭스 비에서도 분무가 바닥 또는 천장에 닿게 되는 결과를 보였다.

초임계 탄화수소계열 혼합유체의 이중 충돌 제트 분무 가시화 (Visualization of Doublet Impinging Jet Spray in Supercritical Mixed Hydrocarbon Fluid)

  • 송주연;최명환;안정우;구자예
    • 한국추진공학회지
    • /
    • 제25권4호
    • /
    • pp.53-58
    • /
    • 2021
  • 대체모델을 사용한 탄화수소계열 혼합유체를 아임계 및 초임계 상태에서 이중 충돌 분무를 통해 분무 메커니즘을 가시화하여 분석하였다. 임계압력과 온도가 다른 데칸과 메틸사이클로헥산을 대체모델로 선정하였다. 챔버 내부에 이중 충돌 인젝터를 설치하여 아임계 및 초임계 상태에서 고속카메라를 통해 분무를 가시화하였다. 혼합유체의 분사 및 챔버 환산압력은 Pr(P/Pc)=1로 유사하게 유지하였으며 Tr(T/Tc)은 0.48에서 1.02까지 증가시켰다. Tr이 증가할수록 혼합유체의 물성치가 각각의 임계점에 도달하여 분무각은 증가하고 시트분열길이는 감소하였다. 또한 혼합 유체가 모두 근임계점에 도달하였을 때 이중 충돌 분열 메커니즘에서 벗어나 밀도 구배의 변화가 크게 관측됨을 보였다.

An EDA Analysis of Seoul Metropolitan Area's Mountain Usage Patterns of Users in Their 20~30s after COVID-19 Occurrence

  • Lee, BoBae;Yeon, PoungSik
    • 인간식물환경학회지
    • /
    • 제24권2호
    • /
    • pp.229-244
    • /
    • 2021
  • Background and objective: The purpose of this study was to comprehensively analyze the user behavior in order to cope appropriately with the increasing demand for mountain usage of those in their 20s and 30s and to allocate resources efficiently. Methods: To analyze the behavior of mountain hiking users, an exploratory data analysis (EDA) was conducted on the data which had been collected in the app Tranggle. The main target are users in their 20s and 30s who visited the mountains in the metropolitan area in 2019-2020. Among them, we have selected data on the top 13 mountains based on the frequency of visits. After data pre-processing, mountain usage patterns were analyzed through statistical analysis and visualization. Results: Compared to 2019, the number of users in 2020 increased 1.36 times. The utilization rate of the well-established hiking trails has also increased. The usage of mountain on weekends (Saturday > Sunday) was still the highest, and the difference in the usage between the days of the week decreased. Outside of work hours, early morning usage has increased and night-time usage has decreased. There was no significant change in usages depending on activity type, level (experience point) and exercise properties. Conclusion: Since the COVID-19 outbreak, the usage of mountains has been changing towards low user density and short-distance trip. in the post-COVID-19 era, the function and role of forests in daily life are expected to increase. To cope with this, further research needs to be carried out with consideration of the wider demographic and social characteristics.

실험적 외상성 뇌손상모델에서 외상 후 저체온법의 효과 - TUNEL과 β-APP Immunohistochemical Stain - (Effects of Posttraumatic Hypothermia in an Animal Model of Traumatic Brain Injury(TBI) - Immunohistochemical Stain by TUNEL & β-APP -)

  • 안병길;하영수;현동근;박종운;김준미
    • Journal of Korean Neurosurgical Society
    • /
    • 제29권4호
    • /
    • pp.461-470
    • /
    • 2000
  • Objective : Many investigators have demonstrated the protective effects of hypothermia following traumatic brain injury(TBI) in both animals and humans. It has long been recognized that mild to moderate hypothermia improves neurologic outcomes as well as reduces histologic and biochemical sequelae after TBI. In this study, two immunohistochemical staining using terminal deoxynucleotidyl-transferase-mediated biotin dUTP nick end labeling(TUNEL), staining of apoptosis, and ${\beta}$-amyloid precursor protein(${\beta}$-APP), a marker of axonal injury, were done and the authors evaluated the protective effects of hypothermia on axonal and neuronal injury after TBI in rats. Material and Method : The animals were prepared for the delivery of impact-acceleration brain injury as described by Marmarou and colleagues. TBI is achieved by allowing of a weight drop of 450gm, 1 m height to fall onto a metallic disc fixed on the intact skull of the rats. Fourty Sprague-Dawley rats weighing 400 to 450g were subjected to experimental TBI induced by an impact-acceleration device. Twenty rats were subjected to hypothermia after injury, with their rectal temperatures maintained at $32^{\circ}C$ for 1 hour. After this 1-hour period of hypothermia, rewarming to normothermic levels was accomplished over 30-minute period. Following 12 hours, 24 hours, 1 week and 2 weeks later the animals were killed and semiserial sagittal sections of the brain were reacted for visualization of the apoptosis and ${\beta}$-APP. Results : The density of ${\beta}$-APP marked damaged axons within the corticospinal tract at the pontomedullary junction and apoptotic cells at the contused cerebral cortex were calculated for each animal. In comparison with the untreated controls, a significant reduction in ${\beta}$-APP marked damaged axonal density and apoptotic cells were found in all hypothermic animals(p<0.05). Conclusion : This study shows that the posttraumatic hypothermia result in substantial protection in TBI, at least in terms of the injured axons and neurons.

  • PDF

Investigation of thermal hydraulic behavior of the High Temperature Test Facility's lower plenum via large eddy simulation

  • Hyeongi Moon ;Sujong Yoon;Mauricio Tano-Retamale ;Aaron Epiney ;Minseop Song;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3874-3897
    • /
    • 2023
  • A high-fidelity computational fluid dynamics (CFD) analysis was performed using the Large Eddy Simulation (LES) model for the lower plenum of the High-Temperature Test Facility (HTTF), a ¼ scale test facility of the modular high temperature gas-cooled reactor (MHTGR) managed by Oregon State University. In most next-generation nuclear reactors, thermal stress due to thermal striping is one of the risks to be curiously considered. This is also true for HTGRs, especially since the exhaust helium gas temperature is high. In order to evaluate these risks and performance, organizations in the United States led by the OECD NEA are conducting a thermal hydraulic code benchmark for HTGR, and the test facility used for this benchmark is HTTF. HTTF can perform experiments in both normal and accident situations and provide high-quality experimental data. However, it is difficult to provide sufficient data for benchmarking through experiments, and there is a problem with the reliability of CFD analysis results based on Reynolds-averaged Navier-Stokes to analyze thermal hydraulic behavior without verification. To solve this problem, high-fidelity 3-D CFD analysis was performed using the LES model for HTTF. It was also verified that the LES model can properly simulate this jet mixing phenomenon via a unit cell test that provides experimental information. As a result of CFD analysis, the lower the dependency of the sub-grid scale model, the closer to the actual analysis result. In the case of unit cell test CFD analysis and HTTF CFD analysis, the volume-averaged sub-grid scale model dependency was calculated to be 13.0% and 9.16%, respectively. As a result of HTTF analysis, quantitative data of the fluid inside the HTTF lower plenum was provided in this paper. As a result of qualitative analysis, the temperature was highest at the center of the lower plenum, while the temperature fluctuation was highest near the edge of the lower plenum wall. The power spectral density of temperature was analyzed via fast Fourier transform (FFT) for specific points on the center and side of the lower plenum. FFT results did not reveal specific frequency-dominant temperature fluctuations in the center part. It was confirmed that the temperature power spectral density (PSD) at the top increased from the center to the wake. The vortex was visualized using the well-known scalar Q-criterion, and as a result, the closer to the outlet duct, the greater the influence of the mainstream, so that the inflow jet vortex was dissipated and mixed at the top of the lower plenum. Additionally, FFT analysis was performed on the support structure near the corner of the lower plenum with large temperature fluctuations, and as a result, it was confirmed that the temperature fluctuation of the flow did not have a significant effect near the corner wall. In addition, the vortices generated from the lower plenum to the outlet duct were identified in this paper. It is considered that the quantitative and qualitative results presented in this paper will serve as reference data for the benchmark.

소셜미디어 콘텐츠의 오피니언 마이닝결과 시각화: N라면 사례 분석 연구 (Visualizing the Results of Opinion Mining from Social Media Contents: Case Study of a Noodle Company)

  • 김유신;권도영;정승렬
    • 지능정보연구
    • /
    • 제20권4호
    • /
    • pp.89-105
    • /
    • 2014
  • Web2.0의 등장과 함께 급속히 발전해온 온라인 포럼, 블로그, 트위터, 페이스북과 같은 소셜 미디어 서비스는 소비자와 소비자간의 의사소통을 넘어 이제 기업과 소비자 사이의 새로운 커뮤니케이션 매체로도 인식되고 있다. 때문에 기업뿐만 아니라 수많은 기관, 조직 등에서도 소셜미디어를 활용하여 소비자와 적극적인 의사소통을 전개하고 있으며, 나아가 소셜 미디어 콘텐츠에 담겨있는 소비자 고객들의 의견, 관심, 불만, 평판 등을 분석하고 이해하며 비즈니스에 적용하기 위해 이를 적극 분석하는 단계로 진화하고 있다. 이러한 연구의 한 분야로서 비정형 텍스트 콘텐츠와 같은 빅 데이터에서 저자의 감성이나 의견 등을 추출하는 오피니언 마이닝과 감성분석 기법이 소셜미디어 콘텐츠 분석에도 활발히 이용되고 있으며, 이미 여러 연구에서 이를 위한 방법론, 테크닉, 툴 등을 제시하고 있다. 그러나 아직 대량의 소셜미디어 데이터를 수집하여 언어처리를 거치고 의미를 해석하여 비즈니스 인사이트를 도출하는 전반의 과정을 제시한 연구가 많지 않으며, 그 결과를 의사결정자들이 쉽게 이해할 수 있는 시각화 기법으로 풀어내는 것 또한 드문 실정이다. 그러므로 본 연구에서는 소셜미디어 콘텐츠의 오피니언 마이닝을 위한 실무적인 분석방법을 제시하고 이를 통해 기업의사결정을 지원할 수 있는 시각화된 결과물을 제시하고자 하였다. 이를 위해 한국 인스턴트 식품 1위 기업의 대표 상품인 N-라면을 사례 연구의 대상으로 실제 블로그 데이터와 뉴스를 수집/분석하고 결과를 도출하였다. 또한 이런 과정에서 프리웨어 오픈 소스 R을 이용함으로써 비용부담 없이 어떤 조직에서도 적용할 수 있는 레퍼런스를 구현하였다. 그러므로 저자들은 본 연구의 분석방법과 결과물들이 식품산업뿐만 아니라 타 산업에서도 바로 적용 가능한 실용적 가이드와 참조자료가 될 것으로 기대한다.