• Title/Summary/Keyword: density of states

Search Result 553, Processing Time 0.027 seconds

InSe 단일층의 vacancy 결함 특성 연구

  • Lee, Seo-Yun
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.468-472
    • /
    • 2017
  • 2차원 InSe 단일층에 존재할 수 있는 vacancy defect인 In vacancy, Se vacancy의 원자구조 및 전자구조 특성을 제일원리계산을 이용해 살펴보았다. InSe $5{\times}5$ supercell을 이용하였으며 total energy를 구해 어떤 구조가 가장 안정한지 찾았다. Relax된 결함구조들을 clean InSe와 비교하여 어떤 변화가 있었는지 특징을 분석하였다. 이러한 intrinsic 결함들이 각각 어떤 구조로 relaxation되는지 살펴보고 clean InSe와 비교해보았다. 또한 각 결함구조의 density of states (DOS), projected density of states (PDOS)와 band structure를 clean InSe와 비교해봄으로써 defect state가 어떻게 나타나는지를 찾아보았다.

  • PDF

First-Principles Study of the Three Polymorphs of Crystalline 1,1-Diamino-2,2-dinitrotheylene

  • Wu, Qiong;Zhu, Weihua;Xiao, Heming
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2281-2285
    • /
    • 2013
  • The electronic structure, optical spectra, and thermodynamic properties of the three FOX-7 polymorphs (${\alpha}$, ${\beta}$, and ${\gamma}$) have been studied systematically using density functional theory. The LDA (CA-PZ) and generalized gradient approximation (GGA) (PW91) functions were used to relax the three FOX-7 phases without any constraint. Their density of states and partial density of states were calculated and analyzed. The band gaps for the three phases were calculated and the sequence of their sensitivity was presented. Their absorption coefficients were computed and compared. The thermodynamic functions including enthalpy (H), entropy (S), free energy (G), and heat capacity ($C_p$) for the three phases were evaluated.

Electronic States Calculation of Fe4N by DV-Xα cluster calculation (DV-Xα 클러스터 계산법에 의한 Fe4N의 전자상태계산)

  • Song, Dong-Won;Lee, In-Seop;Bae, Dong-Su
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.44-47
    • /
    • 2002
  • DV(Discrete Variation)-X${\alpha}$ cluster calculation was employed to calculate the electronic states of ${\gamma}'- Fe_4N$ which was one of iron nitride phases synthesized from plasma ion nitriding to improve surface hardness and wear resistance. The result of calculated electron density of states for Fe was similar to the result of band calculation. The cluster used for calculation of electronic states of ${\gamma}'-Fe_4N$ was based on $Fe_{14}N$ cluster which comprises 15 atoms. Finally the electronic states of ${\gamma}'- Fe_4N$ such as net-charge, band order, energy level, electron wave-function, and contour map for electron density were derived by the calculation.

Analysis of Deep-Trap States in GaN/InGaN Ultraviolet Light-Emitting Diodes after Electrical Stress

  • Jeong, Seonghoon;Kim, Hyunsoo;Lee, Sung-Nam
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1879-1883
    • /
    • 2018
  • We analyzed the deep-trap states of GaN/InGaN ultraviolet light-emitting diodes (UV LEDs) before and after electrical stress. After electrical stress, the light output power dropped by 5.5%, and the forward leakage current was increased. The optical degradation mechanism could be explained based on the space-charge-limited conduction (SCLC) theory. Specifically, for the reference UV LED (before stress), two sets of deep-level states which were located 0.26 and 0.52 eV below the conduction band edge were present, one with a density of $2.41{\times}10^{16}$ and the other with a density of $3.91{\times}10^{16}cm^{-3}$. However, after maximum electrical stress, three sets of deep-level states, with respective densities of $1.82{\times}10^{16}$, $2.32{\times}10^{16}cm^{-3}$, $5.31{\times}10^{16}cm^{-3}$ were found to locate at 0.21, 0.24, and 0.50 eV below the conduction band. This finding shows that the SCLC theory is useful for understanding the degradation mechanism associated with defect generation in UV LEDs.

Examination of the Impact of Substituting Germanium for Bismuth on the Energy Density and Electrical Conductivity of the Se60Ge40-xBix Alloy

  • Kareem Ali Jasim;Haider Sahi Hussein;Shaymaa Hashim Aneed;Ebtisam Mohammed Taqi Salman
    • Korean Journal of Materials Research
    • /
    • v.34 no.6
    • /
    • pp.267-274
    • /
    • 2024
  • In this study, four different samples of Se60Ge40-xBix chalcogenides glasses were synthesized by heating the melt for 18 h in vacuum Pyrex ampoules (under a 10-4 Torre vacuum), each with a different concentration (x = 0, 10, 15, and 20) of high purity starting materials. The results of direct current (DC) electrical conductivity measurements against a 1,000/T plot for all chalcogenide samples revealed two linear areas at medium and high temperatures, each with a different slope and with different activation energies (E1 and E2). In other words, these samples contain two electrical conduction mechanisms: a localized conduction at middle temperatures and extended conduction at high temperatures. The results showed the local and extended state parameters changed due to the effective partial substitution of germanium by bismuth. The density of extended states N(Eext) and localized states N(Eloc) as a function of bismuth concentration was used to gauge this effect. While the density of the localized states decreased from 1.6 × 1014 to 4.2 × 1012 (ev-1 cm-3) as the bismuth concentration increased from 0 to 15, the density of the extended states generally increased from 3.552 × 1021 to 5.86 × 1021 (ev-1 cm-3), indicating a reduction in the mullet's randomness. This makes these alloys more widely useful in electronic applications due to the decrease in the cost of manufacturing.

Influence of the density of states and overlap integral on impact ionization rate for silicon (상태밀도와 overlap integral이 실리콘내 전자의 임팩트이온화율에 미치는 영향)

  • 정학기;유창관;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.394-397
    • /
    • 1999
  • Impact ionization, which is a kind of a carrier-carrier interaction process occurring in a semiconductor under the influence of a high electric field, is necessary to analyse carrier transport properties. Since the parabolic or nonparabolic E-k relation is different from real band structure in high energy range, exact model of impart ionization have been presented using full band I-k relation and Fermi's golden rule. We have investigated relation of density of states, energy band structure and overlap integral. We make use of empirical pseudopotential method in order to calculate energy band structure of silicon, tetrahedron method in order to calculate density of states. We know density of states very depends on energy band structure and overlap integral depends on the primary electron energy.

  • PDF

Methodology for Describing Different Phase States of Molecular Nitrogen

  • Cho, Haeng Muk;Kudryavtsev, I.N.;Kramskoy, A.V.
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.215-222
    • /
    • 2014
  • A theory-based methodology for describing the thermodynamic properties of molecular nitrogen is presented. The results obtained indicate a successful application of a fully consistent statistical method for the description of a molecular system in different phase states. The method employs a density of states equation for solid nitrogen and a perturbation potential for gaseous and liquid nitrogen. The main characteristics of the calculation method include the need for a minimal number of initial data and the absence of fitting parameters. The adequacy of the physical model that is the basis for the method allows a description of existing experimental data and the peculiarities of the thermodynamic properties.

195Pt NMR Study of the Influence of Nation Ionomer on the Enhanced Local Density of States at the Surface of Carbon-Supported pt Catalysts

  • Han, Kee-Sung;Lee, Moo-Hee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.13 no.2
    • /
    • pp.135-142
    • /
    • 2009
  • $^{195}Pt$ NMR measurements were performed to deduce the variation of local density of states at the Fermi energy ($E_F$-LDOS) at the surface of carbonsupported Pt catalysts due to the addition of $Nafion^{(R)}$ ionomer in the metalelectrode-assembly for fuel cells. The results showed that the EF-LDOS at the surface of Pt particles was enhanced by the addition of $Nafion^{(R)}$ ionomers whereas it was uninfluenced in the inner (bulk) part of the Pt particles. This suggests that the effects of ionomers on the electronic states of the Pt particle surface are related to the electrochemical activity of the catalysts.

Annealing Effects on Ultra thin MOS Capacitors

  • Ng, Alvin Chi-hai;Xu, Jun;Xu, J.B.;Cheung, W.Y.
    • Electrical & Electronic Materials
    • /
    • v.16 no.9
    • /
    • pp.62.1-62
    • /
    • 2003
  • Silicon oxide with thickness lee than 9 nm is fabricated by tube furnace oxidation. Nitrogen is added to dilute the oxidation rate. Aluminum dots with radius of 0.05 cm are deposited on the oixde. High frequency capacitance-voltage(HF C-V), conductance-voltage(G-V) and current-voltage(I-V) characteristics are measured. Annealing under nitrogen atmosphere is carried out with different time and at different temperature. Densities of the interface states before and after annealing are compared. After annealing, a decrease in density of the interface states is found. Experiments show that 45$0^{\circ}C$ annealing for 30 minutes has the lowest density of the interface states.

  • PDF

Numerical Analysis of Inverted Staggered-Type Hydrogenated Amorphous Silicon Thin Film Transistor (Inverted Staggered-Type 비정질 실리콘 박막트랜지스터의 수치적 분석)

  • Oh, Chang-Ho;Park, Jin-Seok;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.93-96
    • /
    • 1990
  • The characteristics of an inverted staggered-type hydrogenated amorphous silicon thin film transistor has been analyzed by employing numerical simulation. The field effect mobility and threshold voltage are characterized as a function of density of deep and tail states and lattice temperature. It has been found that the density of deep states plays an important role of determining the threshold voltage, while the field effect mobility are very sensitive to the slope of band tail states. Also, the numerically temperature dependence of field effect mobility and threshold voltage has been in good agreements with the experimental results.

  • PDF