• 제목/요약/키워드: dense skip connection

검색결과 5건 처리시간 0.019초

고밀도 스킵 연결을 통한 재귀 잔차 구조를 이용한 단일 이미지 초해상도 기법 (Single Image Super-resolution using Recursive Residual Architecture Via Dense Skip Connections)

  • 진건;정제창
    • 방송공학회논문지
    • /
    • 제24권4호
    • /
    • pp.633-642
    • /
    • 2019
  • 최근, 단일 이미지 초해상도 복원 기법(super-resolution)에서 컨볼루션 신경망 모델은 매우 성공적이다. 잔여 학습 기법은 컨볼루션 신경망 훈련의 안전성과 성능을 향상시킬 수 있다. 본 논문은 저해상도 입력 이미지에서 고해상도 목표 이미지로 비선형 매핑 학습을 위해 고밀도 스킵 연결(dense skip-connection)을 통한 재귀 잔차 구조를 이용한 단일 이미지 초해상도 복원 기법을 제안한다. 제안하는 단일 이미지 초해상도 복원 기법은 고밀도 스킵 연결 방식을 통해 재귀 잔차 학습 방법을 채택해서 깊은 신경망에서 학습이 어려운 문제를 완화하고 더 쉽게 최적화하기 위해 신경망 안에 불필요한 레이어를 제거한다. 제안하는 방법은 매우 깊은 신경망의 사라지는 변화도(vanishing gradient) 문제를 완화할 뿐만 아니고 낮은 복잡성으로 뛰어난 성능을 얻음으로써 단일 이미지 초해상도 복원 기법의 성능을 향상시킨다. 실험 결과를 통해 제안하는 알고리듬이 기존의 알고리듬 보다 결과가 더 우수함을 보인다.

SDCN: Synchronized Depthwise Separable Convolutional Neural Network for Single Image Super-Resolution

  • Muhammad, Wazir;Hussain, Ayaz;Shah, Syed Ali Raza;Shah, Jalal;Bhutto, Zuhaibuddin;Thaheem, Imdadullah;Ali, Shamshad;Masrour, Salman
    • International Journal of Computer Science & Network Security
    • /
    • 제21권11호
    • /
    • pp.17-22
    • /
    • 2021
  • Recently, image super-resolution techniques used in convolutional neural networks (CNN) have led to remarkable performance in the research area of digital image processing applications and computer vision tasks. Convolutional layers stacked on top of each other can design a more complex network architecture, but they also use more memory in terms of the number of parameters and introduce the vanishing gradient problem during training. Furthermore, earlier approaches of single image super-resolution used interpolation technique as a pre-processing stage to upscale the low-resolution image into HR image. The design of these approaches is simple, but not effective and insert the newer unwanted pixels (noises) in the reconstructed HR image. In this paper, authors are propose a novel single image super-resolution architecture based on synchronized depthwise separable convolution with Dense Skip Connection Block (DSCB). In addition, unlike existing SR methods that only rely on single path, but our proposed method used the synchronizes path for generating the SISR image. Extensive quantitative and qualitative experiments show that our method (SDCN) achieves promising improvements than other state-of-the-art methods.

음향 이벤트 검출을 위한 DenseNet-Recurrent Neural Network 학습 방법에 관한 연구 (A study on training DenseNet-Recurrent Neural Network for sound event detection)

  • 차현진;박상욱
    • 한국음향학회지
    • /
    • 제42권5호
    • /
    • pp.395-401
    • /
    • 2023
  • 음향 이벤트 검출(Sound Event Detection, SED)은 음향 신호에서 관심 있는 음향의 종류와 발생 구간을 검출하는 기술로, 음향 감시 시스템 및 모니터링 시스템 등 다양한 분야에서 활용되고 있다. 최근 음향 신호 분석에 관한 국제 경연 대회(Detection and Classification of Acoustic Scenes and Events, DCASE) Task 4를 통해 다양한 방법이 소개되고 있다. 본 연구는 다양한 영역에서 성능 향상을 이끌고 있는 Dense Convolutional Networks(DenseNet)을 음향 이벤트 검출에 적용하기 위해 설계 변수에 따른 성능 변화를 비교 및 분석한다. 실험에서는 DenseNet with Bottleneck and Compression(DenseNet-BC)와 순환신경망(Recurrent Neural Network, RNN)의 한 종류인 양방향 게이트 순환 유닛(Bidirectional Gated Recurrent Unit, Bi-GRU)을 결합한 DenseRNN 모델을 설계하고, 평균 교사 모델(Mean Teacher Model)을 통해 모델을 학습한다. DCASE task4의 성능 평가 기준에 따라 이벤트 기반 f-score를 바탕으로 설계 변수에 따른 DenseRNN의 성능 변화를 분석한다. 실험 결과에서 DenseRNN의 복잡도가 높을수록 성능이 향상되지만 일정 수준에 도달하면 유사한 성능을 보임을 확인할 수 있다. 또한, 학습과정에서 중도탈락을 적용하지 않는 경우, 모델이 효과적으로 학습됨을 확인할 수 있다.

다중분광밴드 위성영상의 작물재배지역 추출을 위한 Attention Gated FC-DenseNet (Attention Gated FC-DenseNet for Extracting Crop Cultivation Area by Multispectral Satellite Imagery)

  • 성선경;모준상;나상일;최재완
    • 대한원격탐사학회지
    • /
    • 제37권5_1호
    • /
    • pp.1061-1070
    • /
    • 2021
  • 본 연구에서는 국내 농업지역에 대한 작물재배지역의 분류를 위하여 FC-DenseNet 모델에 attention gate를 적용하여 딥러닝 모델의 성능을 향상시키고자 하였다. Attention gate는 특징맵의 공간/분광적 중요도에 따른 가중치를 추가적으로 학습하여 딥러닝 모델의 학습을 용이하게 하고, 모델의 성능을 향상시킬 수 있다. Attention gate를 FC-DenseNet의 스킵 연결 부분에 추가한 딥러닝 모델을 이용하여 양파 및 마늘 지역의 작물분류를 수행하였다. PlanetScope 위성영상을 이용하여 훈련자료를 제작하였으며, 훈련자료의 불균형 문제를 해결하기 위하여 전처리 과정을 적용하였다. 다양한 평가자료를 이용하여 작물재배분류 결과를 평가한 결과, 제안된 딥러닝 모델은 기존의 FC-DenseNet과 비교하여 효과적으로 양파 및 마늘 지역을 분류할 수 있는 것을 확인하였다.

Fast Spectral Inversion of the Strong Absorption Lines in the Solar Chromosphere Based on a Deep Learning Model

  • Lee, Kyoung-Sun;Chae, Jongchul;Park, Eunsu;Moon, Yong-Jae;Kwak, Hannah;Cho, Kyuhyun
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.46.3-47
    • /
    • 2021
  • Recently a multilayer spectral inversion (MLSI) model has been proposed to infer the physical parameters of plasmas in the solar chromosphere. The inversion solves a three-layer radiative transfer model using the strong absorption line profiles, H alpha and Ca II 8542 Å, taken by the Fast Imaging Solar Spectrograph (FISS). The model successfully provides the physical plasma parameters, such as source functions, Doppler velocities, and Doppler widths in the layers of the photosphere to the chromosphere. However, it is quite expensive to apply the MLSI to a huge number of line profiles. For example, the calculating time is an hour to several hours depending on the size of the scan raster. We apply deep neural network (DNN) to the inversion code to reduce the cost of calculating the physical parameters. We train the models using pairs of absorption line profiles from FISS and their 13 physical parameters (source functions, Doppler velocities, Doppler widths in the chromosphere, and the pre-determined parameters for the photosphere) calculated from the spectral inversion code for 49 scan rasters (~2,000,000 dataset) including quiet and active regions. We use fully connected dense layers for training the model. In addition, we utilize a skip connection to avoid a problem of vanishing gradients. We evaluate the model by comparing the pairs of absorption line profiles and their inverted physical parameters from other quiet and active regions. Our result shows that the deep learning model successfully reproduces physical parameter maps of a scan raster observation per second within 15% of mean absolute percentage error and the mean squared error of 0.3 to 0.003 depending on the parameters. Taking this advantage of high performance of the deep learning model, we plan to provide the physical parameter maps from the FISS observations to understand the chromospheric plasma conditions in various solar features.

  • PDF