• Title/Summary/Keyword: denature PAGE

Search Result 2, Processing Time 0.015 seconds

Localization and isozyme patterns of phosphatase in Fibricola seoulensis (Fibricola seoulensis에서 phosphatase의 분포와 동위효소유형)

  • 김홍자;김창환
    • Parasites, Hosts and Diseases
    • /
    • v.31 no.4
    • /
    • pp.353-362
    • /
    • 1993
  • The present study was carried out to investigate the localization and isozyme patterns of acid phosphatase and alkaline phosphatase in metacercariae and in adults of F. seoulensis by enzyme-histochemistry method and electrophoresis. Acidphosphatase showed a strong activity at pH 5 in the intestinal caecum of adults, but showed no reactions in the nonsubstrate control and in the inhibitor-treated control. Alkaline phosphatase showed a strong activity at pH 8 in the intestinal caecum and the tribocytic organ of adults, and in the intestinal caecum and in the genital anlagen of metacercariae. In non-denature PAGE, ten bands of protein fraction from the extracts of metacercariae and twenty-two bands from adults were detected. In denature PAGE, two protein bands having molecular weights of 192 kDa and 123 kDa were detected in the metacercariae, but absent from adult stage. In adults, protein fractions of 27.5 kDa, 24.5 kDa, 21.4 kDa, 18 kDa, 16 kDa and 15 kDa were detected. In non-denature PAGE, isozymes of acid phosphatase showed the most strong activity at pH 5, whereas no activity was shown at pH 2 and pH 7. One isozyme 85 kDa, 73 kDa and 62 kDa) in adults.

  • PDF

Effect of Ultraviolet Irradiation on Molecular Properties of Ovalbumin (자외선 조사가 Ovalbumin의 분자적 성질에 미치는 영향)

  • Cho, Yong-Sik;Song, Kyung-Bin;Yamada, Koji;Han, Gui-Jung
    • Applied Biological Chemistry
    • /
    • v.51 no.4
    • /
    • pp.276-280
    • /
    • 2008
  • To elucidate the effects of ultraviolet (UV) irradiation on molecular properties of ovalbumin, the molecular weight profile, secondary structure and tertiary structure of proteins were examined after irradiation by UV with 254 nm wavelength for 4, 8, 16 and 32 hrs, respectively. UV irradiation of protein solution caused the disruption on the native state of protein molecules. SDS-PAGE and gel permeation chromatography indicated that radiation caused initial fragmentation of polypeptide chains and as a result subsequent aggregation due to cross-linking of protein molecules. Circular dichroism (CD) study showed that UV irradiation caused the change on the secondary structure resulting in decrease of helical structure or compact denature on structure of protein depending on irradiation period. Fluorescence spectroscopy indicated that irradiation quenched the emission intensity excited at 280 nm. These results suggest that UV irradiation affect the molecular properties of ovalbumin and may have potential as a means to change the antigenicity of protein allergen.